Safe, Modular Packet
Pipeline Programming

Devon Loehr and David Walker

W

-/ﬁ Ly
YT

. 1

-_"

Switch Pipeline

Lucid: A Language for Control in the Data Plane
e Sonchack, Loehr, Rexford, Walker (SIGCOMM 2021)

e Provides a high-level, event-based abstraction of switches

global int gl = 4; // Global variables persist across packets
global int g2 9;

event simple () {

int x = !gl; // Read g2, store in local x
int y = x + x;
g2 = y; // Read local y, store in gl

Pipeline Types: The Basics
e Key idea: annotate globals with their location in an abstract pipeline
e Track our current location in the abstract pipeline while typechecking handlers

1 global int gl = 4; // Has type int@O0
global int g2 = 9; // Has type int@l

event simple () { // Current location:

int x = !gl; // Current location:
int y = x + X; // Current location:
g2 = y; // Current location:

Pipeline Types: The Basics
e If we try to access a global after we’ve passed it in the pipeline, ERROR!

e Since the global order is fixed, we can point directly to the offending line

global int gl = 4; // Has type int@0
global int g2 = 9; // Has type int@l

event broken() { // Current location: 0
int x 'g2; // Current location: 2
int y X + x; // Current location: 2
gl := // Error! Invalid access!

Function Types
e Function types contain both input and output types and locations

e All Lucid functions are non-recursive

// (unit, 0) -> (unit, 2)
fun unit copy gl g2() {
int x = !'gl;
int y = x + x;
g2 :=y;
}
event simple () { // Current location: 0
copy gl g2(); // Current location: 2

}

1
2
3
4
5
6
5
8
9

Polymorphic Function Types

e Function types may also refer to polymorphic locations (here, a and b)

// Type (int@a * int@b, a) -> (unit, b+l)

fun unit copy(int@a globl, int@b glob2)
int x = !globl; // Current location:
int y = x + X; // Current location:
glob2 := y; // What if b < a?

}
event simple () { // Current location:

copy(gl, g2); // Current location:
}

First Extension: Compound, Abstract Data Types

1 module BloomFilter {
type filter

val add : (filter@a * int, a) -> (unit, a+1l)
val mem : (filter@a * int, a) -> (bool, a+l)

type filter =
array arr; // Mutable, stored in stage memory
int seed; // Immutable, value fixed at compile-time
}
fun unit add(filter@a £, int entry) {
int idx = hash(filter.seed, entry); // Compute an index
set(f.arr, idx, 1);// Update arr at that index

First Extension: Compound, Abstract Data Types

1 type filter =
array arrl; // Mutable, stored in stage memory
array arr2; // Location: after arrl
int seedl; // Immutable, value fixed at compile-time

int seed?2;

// Type (filter@a * int@b, a) -> (unit, a+2) doesn’t match interface!
o fun unit add(filter@a £, int entry) {
10 int 1dxl = hash(filter.seedl, entry);
11 int i1idx2 = hash(filter.seed2, entry); // Current Location: a
12 set(f.arrl, idxl, 1); // Current Location: a+l
13 set(f.arr2, idx2, 1); // Current Location: a+2

14

Abstracting Records

One Array

1 global filter f1;
2 global filter £f2;

Two Arrays

11

Hierarchical Locations

R<RO<R.00<R.01<R1<R1.0<R.1.1

12

First Extension: Compound, Abstract Data Types

1 type filter =
array arrl; // Mutable, stored in stage memory
array arr2; // Location: after arrl
int seedl; // Immutable, value fixed at compile-time

int seed?2;

// New type: (filter@R.a * int@b, R.a) -> (unit, R. (atl))
o fun unit add(filter@R.a £, int entry) {
10 int 1dxl = hash(filter.seedl, entry);
11 int idx2 = hash(filter.seed2, entry); //Current location: R.a
12 set(f.arrl, idx1l, 1); // Current location: R.a.l
13 set(f.arr2, idx2, 1); // Current location: R.a.2
14 // Round up to location: R. (a+l)

Second Extension: Vectors and Bounded Loops

e Problem: Data-plane programmers need the flexibility to make trade-offs with
the size of their data structures

e Adding another array to our filter type requires re-writing all code that uses it!
e Solution: Vectors!
e \ectors are fixed-length lists of values, whose lengths are known at

compile-time

14

Second Extension: Vectors and Bounded Loops

1 type filter<n> = {
2 array[n] arrs; // Vector of n arrays, stored in memory
3 int [n] seeds; // Vector of n ints

4

// Functions may accept filters of any size
fun unit add(filter<n> f, int entry) {
for (1 < n) {
int idx = hash(filter.seeds[i], entry);
set(f.arrs[1i], 1dx, 1);

Typechecking loops

e Tricky part: catching errors across iterations of a loop

for (1 < n) { for (1 < n) {

access (arr[0]); access (arrl[i]);

} access (arr2[1i]);

}

for (i < n) {
for (j < m) {
access (arr([J][1i]);

b}

16

Loop Unrolling Lemma

... Some accesses beforehand
for (1 < n) {
access(vec[i].foo); Access 1

access(vec[i] .bar); Access 2

access(vec[i] .baz); Access 3

}

1
2
3
4
5
6
5
8

lteration 3

A
'4 \

s 4 33
ENNEEEEEEENEENENEENEEEENEEE

Related Work

Other data-plane languages such as Domino, Chipmunk and Lyra offer
high-level abstractions for programming control planes, but give little useful
feedback should compilation fail.

Pipeline types are reminiscent of substructural type systems, which enforce
similar ordering constraints. However, such type systems are cumbersome in
practice, and do not have an obvious way of handling vectors and loops.

18

Conclusion

In SIGCOMM 21, we introduced Lucid’s event-driven programming model
and demonstrated its applicability to a variety of networking applications

We’'ve now shown (POPL ‘22) that Lucid’s system of pipeline types is capable
of handling features such as abstract datatypes and parametric vectors, which
are critical for writing modular programs

We hope that the ideas of pipeline types can find traction in other data-plane
languages, and even in pipelined settings outside of networking, such as
signal processing

19

Questions?

20

Table 1. Modules implemented in Lucid2. All make heavy use of polymorphism, records, and vectors. When
one module builds on other modules, we indicate the additional lines of code (LoC) with a +.

Typing
Module Description LoC time (sec)

Bloom Filter Probabilistic set of elements. 53 0.26
+Aging Entries time out +74 +0.44

Hash table Deterministic set of elements 25 0.10
+Cuckoo hashing Contains multiple stages to deal with collisions +0.22

Hash table w/ timeout Deterministic set of elements, plus the time each was last touched 65 0.38
+Cuckoo hashing Contains multiple stages, and clears timed-out entries automatically +0.31

Bidirectional Map Stores lists of integers in an array, mapping each to/from its index 39 13

Count-min sketch Probabilistically counts the number of times an element is accessed 70
+Aging Entries time out

Table 2. Applications implemented in Lucid2. Lines of code (LoC) is for the application alone, not including
comments or the LoC for the modules on which it depends (see Figure 1 for the latter).

Lucidl Lucid2 Typing
Application Description Modules Used LoC LoC time (sec)

Stateful Firewall Blocks unsolicited packets. Cuckoo Hash w/ Aging 189 57 .68

Closed-loop DNS Defense Identify/counter DNS reflection Bloom Filter w/ Aging 215 52 1.8
attacks Cuckoo Hash w/ Aging

*Flow [Sonchack et al. 2018] Collects packets by flow for anal- Vectors only
ysis.

Distributed Prob. Firewall =~ Synchronize a firewall across Bloom Filter
multiple switches
+Aging Entries in the firewall time out Bloom Filter /w Aging

Simple NAT Performs network address trans- Bidirectional Map
lation

Historical Prob. Queries Allows queries of frequency for Count-min sketch w/ Aging
traffic flows

Polymorphic Function Types

e Limitation: the following function cannot be typed in the rudimentary system!

// Type (int@a * int@b, a) -> (unit, b+l) is too general!
fun unit copy(int@a globl, int@b glob2)

int x = !globl; // Current location:

int y = x + X; // Current location:

glob2 := y; // What if b < a?

}
event simple () { // Current location:

copy(gl, g2); // Current location:
}

23

First extension: Constraints and Polymorphism
e Simple constraints allows functions to be polymorphic in location

e In practice, most constraints can be inferred

// [a < b] => (int@a * int@b, a) -> (unit, b+1l)
fun unit copy(int@a globl, int@b glob2) [a < b] {
int x = !globl;
int y = x + x;
glob2 := y;

event simple () { // Current location: 0
copy(gl, g2); // Current location: 2

}

1
2
3
4
5
6
5
8
9

Abstracting Records
One Array

1 global filter f1;
2 global filter £f2;

Two Arrays

i

25

