
Lucid: A High-Level, Easy-To-Use

Dataplane Programming Language

Devon Kennedy Loehr

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Adviser: David Walker

January 2024

© Copyright by Devon Kennedy Loehr, 2023.

All Rights Reserved

Abstract

The introduction of programmable switches and the P4 language for programming

them has made it possible for network operators to write ever-more-sophisticated

network applications, and execute them at high speed. However, possible is not the

same as easy. The de facto standard dataplane programming language, P4, is akin

to an “assembly language” for programmable switches: it provides a powerful but

low-level interface to switch hardware. While this gives the programmer fine-grained

control, it makes it difficult to write and reason about programs with complicated

high-level behavior. Furthermore, modern hardware is heavily specialized for packet

processing. While this specialization allows blazing fast speeds, it also heavily restricts

the sorts of programs a programmable switch can run. Unfortunately, such restrictions

are poorly represented in modern dataplane languages. Should a program violate one

or more of these restrictions, it will fail to compile, often with an arcane or unhelpful

error message.

This dissertation presents Lucid, a high-level, event-based language for

programmable switches. Lucid raises the level of abstraction for data-plane program-

ming in several ways. Control flow is represented by events, each of which has an

associated handler that is executed when the event is generated. Different threads

of control may be interleaved easily by writing them as handlers for separate events.

Lucid provides high-level representations of switch hardware restrictions, which are

enforced by syntactic checks, including a novel type system for detecting ordering

violations.

Lucid is compiled to P4 for the Intel Tofino, and we find that Lucid programs

typically contain around 10 times fewer lines of code than equivalent P4 programs.

Furthermore, the Lucid interpreter may be used to quickly evaluate different config-

urations of a Lucid program, in order to automatically optimize a single program for

different networking environments.

3

Acknowledgements

I would like to thank my advisor, David Walker, for taking me under his wing and

supporting me through my graduate career. He has been an invaluable source of

inspiration and advice, and I am extremely fortunate to have worked with him.

Next I would like to thank my collaborator, John Sonchack, without whom Lucid

would not exist. Our numerous hour-long discussions are always fruitful and led to

the language we have today. I can only hope to work with similar collaborators in

the future.

I would like to thank as well my undergraduate adviser, Zachary Palmer, for

introducing me to the realm of programming languages, providing me with early

research experience, and supporting me in my graduate school applications.

Finally, I would like to thank my parents, without whom I would not exist. Their

support, love and trust, have enabled me to pursue my education through graduate

school, and for that I am endlessly grateful.

4

Contents

Abstract . 3

Acknowledgements . 4

1 Introduction 11

1.0.1 Existing Work . 14

1.1 Lucid: A Language for Control in the Data Plane 14

1.2 A MAC learner in Lucid . 16

1.3 Contributions . 18

1.3.1 Attribution . 18

2 Background 20

2.1 Modeling Computer Networks . 20

2.1.1 Packets and Headers . 21

2.1.2 Forwarding and Routing . 22

2.1.3 Data Plane and Control Plane 23

2.1.4 Common Applications . 23

2.2 PISA Switches . 25

2.2.1 PISA Overview . 25

2.2.2 Parsers and Deparsers . 27

2.2.3 Packet Processing Pipelines 27

2.2.4 Packet Header Vectors . 31

5

2.2.5 Recirculation . 31

2.3 Programming PISA Switches . 32

2.3.1 P4 . 32

2.3.2 Why is P4 programming hard? 33

2.3.3 Other dataplane languages . 37

3 The Lucid Language 40

3.0.1 Attribution . 40

3.1 Lucid by Example . 41

3.1.1 Event-based Dataplane Programming 41

3.1.2 Bloom Filters . 45

3.1.3 Persistent Memory . 46

3.1.4 Modules and Records . 48

3.1.5 Vectors and Loops . 49

3.1.6 Data structure libraries . 51

3.2 Advanced Lucid . 53

3.2.1 Grammar Overview . 53

3.2.2 Hashing . 54

3.2.3 Printing . 54

3.2.4 Event destinations . 55

3.2.5 Sizes . 56

3.2.6 Advanced Array Accesses . 57

3.2.7 Matches and Tables . 62

3.2.8 More on Types . 68

3.2.9 Interface files . 70

3.2.10 Parsers . 72

3.3 The Lucid Interpreter . 78

3.3.1 Simulation . 79

6

3.3.2 Capabilities of the Interpreter 80

3.4 Evaluation . 82

3.4.1 Expressivity . 82

3.4.2 Usability . 84

3.5 Comparison to P4 . 88

3.5.1 Feature Comparison . 88

3.5.2 Limitations . 92

3.6 Related Work . 93

3.6.1 Other network programming languages 93

3.6.2 Syntax . 95

3.6.3 Network Simulators . 96

4 Pipeline Types 97

4.0.1 Attribution . 97

4.1 Pipeline Types by Example . 97

4.1.1 Ordering Errors . 97

4.1.2 Pipeline Types . 100

4.1.3 Polymorphism and Constraints 103

4.1.4 Records and Modules . 106

4.1.5 Vectors . 111

4.1.6 Location Inference . 115

4.2 Formal Type System . 116

4.2.1 Locations . 119

4.2.2 Pipeline Semantics . 122

4.2.3 Type Checking . 124

4.2.4 Limitations . 131

4.3 Properties of Pipe . 132

4.4 Implementation . 135

7

4.4.1 Typechecking Handlers . 136

4.4.2 Type Inference . 137

4.4.3 SMT Encoding . 140

4.4.4 Evaluation . 142

4.4.5 Usability . 145

4.5 Related Work . 146

5 Compiling Lucid 148

5.1 Compiler Overview . 149

5.1.1 Core Lucid . 150

5.1.2 Attribution . 150

5.2 Frontend Pipeline . 150

5.2.1 Unpacking Modules . 151

5.2.2 Function Inlining . 152

5.2.3 Eliminating Global Event Arguments 154

5.2.4 Eliminating Non-Global Compound Types 156

5.2.5 Final Simplifications . 159

5.3 Backend Compilation Strategy . 160

5.3.1 Match-action tables . 160

5.3.2 Well-formedness . 164

5.3.3 Output form . 165

5.4 Backend Pipeline . 166

5.4.1 Combining Events . 167

5.4.2 Converting Memory Accesses 168

5.4.3 Dynamic tables . 170

5.4.4 Atomizing Operations . 173

5.4.5 Boolean operations . 175

5.5 Scheduling Lucid . 181

8

5.5.1 Immutable Conditions . 181

5.5.2 Dependency graphs . 182

5.5.3 Layout Algorithm . 185

5.5.4 Merging tables . 187

5.6 Emitting P4 . 189

5.7 Evaluation . 190

5.7.1 Compilation Time . 190

5.7.2 Resource Efficiency . 192

5.7.3 Comparison to the Tofino Compiler 196

5.8 Related Work . 197

6 Parasol: Optimizing Dataplane Programs in Lucid 200

6.1 Dataplane Optimization . 200

6.1.1 Parasol . 203

6.1.2 Attribution . 205

6.2 An Illustrative Example . 206

6.3 Extensions to Lucid . 208

6.4 Optimizing Sketches . 211

6.4.1 Measurements and Objectives 212

6.4.2 Search Algorithm . 214

6.4.3 Design Tradeoffs . 217

6.5 Evaluation . 220

6.5.1 Language . 221

6.5.2 Optimization Quality . 224

6.5.3 Optimizer Speed . 228

6.5.4 Case Study: Data-plane Caching 230

6.6 Related Work . 232

9

7 Conclusion 234

Appendix A Pipeline Types 236

A.1 Operational Semantics . 236

A.2 Well-formedness conditions . 238

A.2.1 Size rules . 238

A.2.2 Location rules . 238

A.2.3 Constraint rules . 239

A.2.4 Type rules . 239

A.2.5 Environment rules . 239

A.2.6 Typing Judgement . 240

A.3 Properties of Pipe . 243

A.3.1 Value Lemmas . 243

A.3.2 Minor Lemmas . 244

A.3.3 Well-formedness lemmas . 244

A.3.4 Constraint Lemmas . 246

A.3.5 Weakening Lemmas . 248

A.3.6 Substitution Lemmas . 250

A.3.7 Loop lemmas . 252

A.4 Proof of Soundness . 255

Appendix B Parasol 263

B.1 Comparison to hand-optimized code 263

References 278

10

Chapter 1

Introduction

Every day, billions of people wake up and connect to the internet, be it to check their

mail, communicate with friends, work remotely, or just look something up. We live in

an increasingly interconnected and globalized world, in which time zones are a greater

barrier to communication than planetary-scale distances. The very fabric of modern

society is built upon computer networks, from those in individual homes and offices,

to giant ISP backbones, to the myriad datacenters of cloud service providers.

As networks grow, the demands for speed and functionality grow with them.

Early networks merely had to forward messages; modern networks contain a bevy

of additional functionality, often including traffic management (e.g. load balanc-

ing [5, 45, 38]), security (firewalls, DDoS protection [19, 69, 50, 47]) and telemetry

(monitoring, measurement [24, 89, 23, 10, 74]) With all this complexity, configuring

and running a large-scale network is a herculean task.

Historically, much of this functionality was implemented via dedicated hardware,

called middleboxes, which were inserted into the network between switches. How-

ever, in recent years there has been a shift from static, fixed-function devices to

programmable hardware whose behavior can be customized, enabling not just con-

figuration but the ability to run entirely new types of networking algorithms with

11

the same hardware. This approach is referred to as Software-Defined Network-

ing (SDN), and the art of programming network hardware to directly run new

algorithms (as opposed to offloading that computation to a controller) is called dat-

aplane programming.

The de facto standard language for dataplane programming is called P4 [14]. Since

its introduction in 2015 [58], P4 has been the basis for a wide variety of dataplane

programming research [2], covering all the previously-mentioned functionality and

more. Modern programmable networking hardware increasingly supports P4, from

switches like the Intel Tofino [1] to smartNICs like the Pensando DSC [8].

Despite P4’s success, however, dataplane programming remains a challenging task.

Programmable networking hardware is heavily optimized for its primary purpose:

processing many packets, fast. As a result, the hardware places many restrictions,

both implicit and explicit, on the sorts of programs it can run. What’s more, P4

operates at a low level of abstraction, forcing dataplane programmers to reason about

hardware primitives rather than the high-level behavior of their program. This makes

it easy to run afoul of the hardware restrictions, and makes writing sophisticated

programs prohibitively difficult.

For example, consider the simple application of a MAC learner, which automati-

cally learns how to forward packets to different MAC addresses. Its high-level logic

is easy to describe: it should maintain a mapping of MAC addresses to ports on the

switch. When a packet arrives, it should add that packet’s source MAC address to

its map (if necessary), then look up the destination MAC address and forward the

packet out of the appropriate port. If it does not have an entry for the destination,

it should broadcast the packet on all ports.

12

However, writing even a simple MAC learner in P4 is challenging. To do so, one

must:

1. Write a packet parser (as a state machine) to extract the relevant MAC ad-

dresses from the packet’s headers.

2. Allocate memory to store the address map (using hashed MAC addresses as

keys)1.

3. Explicitly hash both the source and destination MAC address for each packet,

and create specialized memory access actions to look them up.

4. If the source MAC is not in the address map, generate a new packet at the

beginning of the switch (recirculation) to add it to the map2.

5. Manually ensure that all accesses to the address map occur in a consistent

order3.

6. Send the packet out of the correct port(s).

Few of the steps above are simple! Indeed, they serve to illustrate two of the

most pernicious hardware constraints. Steps 2-5 all deal with the complexities of

stateful memory management on programmable hardware, which have significant

restrictions on how often they can be accessed per packet, and in which order. As

a result, step 4 requires recirculating the packet, sending it back to the beginning

of the switch for additional processing (and additional memory accesses). Manually

managing recirculation is a difficult process that involves configuring the switch ahead

of time, as well as modifying every part of the program to account for the fact that

recirculated packets should be handled differently.
1In practice, one must allocate two copies of the map, since we need to access it twice per packet.
2Note that this increases the number of different kinds of packets this program has to handle,

which requires additional configuration.
3This ensures that the program can be laid out in the hardware’s linear packet processing pipeline.

13

1.0.1 Existing Work

In the past decades, researchers have attempted to address many of the shortcomings

of P4. Lyra [31] is a high-level dataplane programming language that allows users

to program multiple switches at once. Domino [70] and Chipmunk [32] introduce ab-

stractions for the computation capabilities of different pieces of hardware. P4All [36]

introduces the ability to create flexibly-sized data structures which are automatically

allocated memory by the compiler, rather than the user.

Each of these works provides useful insights, but each has drawbacks as well. Lyra

provides a useful high-level programming interface, but relies entirely on synthesis for

its compilation, meaning that users get no useful feedback should their program fail

to compile. Domino and Chipmunk are able to abstract different types of hardware,

but share the issue of synthesis-based compilation, and provide little ability to au-

tomatically optimize the programs they compile. P4All provides this capability, but

requires significant user input to its optimizer, and operates at the same low level of

abstraction as P4.

1.1 Lucid: A Language for Control in the Data

Plane

The goal of this thesis is to improve the existing dataplane programming infrastruc-

ture by introducing Lucid, a high-level dataplane programming language emphasizing

ease-of-use. Lucid is built on top of P44 but provides a different set of primitives and

language features designed specifically for dataplane programming. To help ensure

programs compile, Lucid embraces a correct-by-construction programming model, in

which hardware restrictions are explicitly represented and enforced by the language.
4That is, a Lucid program compiles down to a P4 program.

14

Event-based programming Lucid programs are based around the idea of re-

sponding to events that occur in the network, such as the arrival of a packet or the

failure of a link. Each event is associated with a handler, a block of imperative C-like

code that is executed when the event occurs. Handlers may generate more events,

potentially at different locations in the network, allowing communication between

switches and coordination of control tasks. The Lucid-to-P4 compiler automatically

interleaves the processing of events, meaning that Lucid programmers can avoid the

complexities of recirculation and write different “threads” of control separately.

Modular programming The design of Lucid encourages modular programming

techniques, allowing users to reason about different parts of their programs indepen-

dently. In addition to the way that events allow users to write their threads of control

separately, Lucid also provides general-purpose (but non-recursive) functions, as well

as a module system allowing users to define reusable libraries encapsulated behind

user-written interfaces. Indeed, the Lucid authors have created a small library of

commonly used dataplane structures, such as Bloom filters, count-min sketches, and

arrays with bounds-checking.

Correct-by-construction There are many ways a dataplane program might fail

to compile, not all of which are directly visible in the program. Many of these implicit

restrictions center around the way that switches treat stateful memory. For example,

such memory must be accessed in a consistent order across all parts of the program. In

addition, the amount of computation allowed during state updates is limited in various

ways. Lucid uses language design to guide users into satisfying these constraints, by

(1) providing a simple, high-level guideline on how to access stateful memory, and (2)

enforcing that guideline through the use of a type system and a series of syntactic

checks that provide useful, actionable feedback when violations are detected.

15

1.2 A MAC learner in Lucid

Returning to our MAC learner example from above, the steps to implement the same

program in Lucid are as follows:

1. Define several arrays (stateful memory constructs), which store the learned

MAC addresses.

2. Create an event representing incoming packets, whose handler hashes the packet’s

MAC addresses and looks them up5.

3. Create an event whose handler updates the learned addresses when necessary.

(a) The implicit recirculation and interleaving of these events’ handlers is han-

dled automatically by the Lucid compiler.

(b) The Lucid type system will automatically alert the user if the address map

is accessed in an inconsistent order.

4. Send the packet out of the correct port(s).

As you can see, the process for writing a simple MAC learner in Lucid is not only

shorter, but substantially simpler: the complicated reasoning about recirculation and

stateful memory access have been offloaded to the Lucid compiler. Indeed, the entire

program takes only 34 lines of Lucid code, shown in Figure 1.1. In comparison, the

P4 code output by the Lucid compiler is 874 lines, nearly a hundred of which6 are

dedicated to simply defining the headers and metadata to be used in the rest of the

program7.
5Defining a parser is not necessary for this simple program; we are able to generate one automat-

ically because the event’s arguments precisely describe the data to read from the packet.
695, to be precise.
7One might point out that the output of the Lucid compiler is perhaps more complicated than

P4 code a human would write, which is true. However, we have found that in general Lucid code is
10x shorter than even hand-written P4 code, so the discrepancy here is not exceptional.

16

1 // Type of an ethernet header
2 type eth_t = { int<48> src_mac; int<48> dst_mac; int<16> ethertype; }
3 const int HASH_SEED = 7;
4 const int ARRAY_LEN = 512;
5

6 // True if we've learned this mac address
7 global Array.t<1> learned_macs_1 = Array.create(ARRAY_LEN);
8 // Second copy so we can access it twice.
9 // We need this because we need to look up two indices,

10 // but each array can only be accessed once per handler
11 global Array.t<1> learned_macs_2 = Array.create(ARRAY_LEN);
12 // 8-bit ports, 1024 entries in the table
13 global Array.t<8> mac_table = Array.create(1024);
14

15 event learn_mac(int<48> mac, int<8> out_port) {
16 int<9> hashed_mac = hash<9>(HASH_SEED, mac);
17 Array.set(learned_macs_1, hashed_mac, 1);
18 Array.set(learned_macs_2, hashed_mac, 1);
19 Array.set(mac_table, hashed_mac, out_port);
20 }
21

22 event ethernet_packet(eth_t eth) {
23 int<9> hashed_src = hash<9>(HASH_SEED, eth#src_mac);
24 int<9> hashed_dst = hash<9>(HASH_SEED, eth#dst_mac);
25 // Lookup src, and learn its mac address if necessary
26 if (Array.get(learned_macs_1, hashed_src) == 0) {
27 generate learn_mac(eth#src_mac, (int<8>)ingress_port);
28 }
29

30 // Lookup dst, and forward/flood the packet as appropriate
31 if (Array.get(learned_macs_2, hashed_dst) == 1) {
32 int<8> port = Array.get(mac_table, hashed_dst);
33 generate_port (port, this);
34 } else { // Flood the packet
35 generate_ports (flood ingress_port, this);
36 }
37 }

Figure 1.1: A simple MAC learner implemented in Lucid. To keep things simple, it
does not handle hash collisions.

17

1.3 Contributions

This thesis makes the following contributions:

1. Lucid (Chapter 3), a new, high-level, event-driven dataplane programming

language with an emphasis on ease-of-use and correct-by-construction code.

Lucid programs are typically 10x shorter than corresponding P4 code, and are

both modular and reusable.

2. Pipeline Types (Chapter 4), a novel type-and-effect system for tracking ac-

cesses to data laid out along a pipeline. We formalize the type system and prove

its soundness, as well as describe its implementation for Lucid.

3. The Lucid compiler (Chapter 5), which translates a Lucid program into an

equivalent P4 program that is specialized for the Intel Tofino. We implement

a scheduling algorithm for statements in the Lucid program, and show that by

using it we can compile much more sophisticated programs than with the Tofino

compiler alone.

4. Parasol (Chapter 6), a framework for writing parameterized dataplane pro-

grams and automatically optimizing their high-level behavior. Parasol lever-

ages Lucid’s expressivity and built-in interpreter to optimize a wider range of

parameters and objective functions than existing optimization frameworks.

1.3.1 Attribution

This work was supported in part by grants from the Network Programming Initiative

and the National Science Foundation (1837030, 2223515, 2312539, and 1703493). The

Lucid language as a whole was developed by the author and John Sonchack, with

frequent advice and support from David Walker and Jennifer Rexford. In addition,

18

the work on Parasol was led by Mary Hogan, with contributions from Shir Landau-

Feibish. A paper describing the language and some of its compilation process was

published in SIGCOMM’21 [73]. A paper describing the type system was published

in POPL’22 [51]. A paper describing Parasol is currently in submission [37]. More

specific attributions are included at the beginning of each chapter.

19

Chapter 2

Background

This chapter is dedicated to explaining some basic principles of networks, dataplane

programming and programmable switches. The concepts here will be referred to freely

throughout the rest of the thesis. The structure of the chapter is as follows: first,

we introduce the very basic concepts of modeling computer networks (§2.1), then

describe the programmable switch architecture that Lucid targets (§2.2). Finally, we

discuss how these switches are programmed today, and what makes modern dataplane

programming difficult (§2.3).

2.1 Modeling Computer Networks

A network is fundamentally a communication system – its primary goal is to transfer

messages from a source to a destination. The fundamental unit of a network is

the switch: a device that forwards messages between two or more directly-connected

neighbors. Each switch has many ports which are used to identify connections to

neighbors. Switches can be “chained” to send messages across further and further

distances.

This view of networks is naturally modeled as a graph, where nodes represent

switches, and edges represent links (direct connections between switches). A par-

20

ticular model may be more or less complex depending on purpose; for example, a

routing algorithm may use edge weights to represent bandwidth, transmission delay,

price, or other properties of individual links. For the purposes of this thesis, we model

networks as simple, unweighted, undirected graphs.

2.1.1 Packets and Headers

Since messages may be arbitrarily long, they are not transmitted through the net-

work wholesale. Instead, individual messages are broken up by the source into smaller

pieces called packets, which are transmitted individually. The destination is then

responsible for reacting to these packets; depending on the communication proto-

col, this might involve reassembling them into the full message, responding to them

individually, or something else.

In addition to the actual message (the payload), packets carry metadata in the

form of headers. A header is a structured collection of data that is prepended

to the payload. The first headers are added by the source, and contain important

information such as the destination (so switches know where to send the packet).

As the packet travels through the network, switches may add additional, temporary

headers by prepending them to the existing headers. The collection of headers on a

packet is sometimes called a header stack.

Common Protocols The format of a header is dictated by the packet’s trans-

mission protocol. In this thesis, we will refer to the following standard protocols:

• The Ethernet protocol is used for transmitting packets from switch to switch.

Ethernet headers contain source and destination fields (both of which are hard-

ware MAC addresses), as well as an ethertype field which indicates what type

of header is next in the stack.

• The Internet Protocol (IP) is used for transmitting packets across networks

21

such as the internet. Like ethernet headers, IP headers contain source and

destination fields, both of which are IP addresses. IP headers also contain

source and destination port numbers: these have no relation to ports on a

switch, but rather function as secondary addresses, directing packets to specific

processes on the source/destination machines.

• The Transport Control Protocol (TCP) is a way of providing reliable, in-

order packet delivery across networks, despite the fact that packets might get

lost or re-ordered during transmission. TCP headers contain sequence numbers

and checksums to ensure packets arrive in-order and uncorrupted.

2.1.2 Forwarding and Routing

When a packet arrives at a switch, that switch must make an important decision:

where (i.e. to which neighbor) should it send that packet? This process is known

as forwarding, and, due to the enormous volume of packets in modern networks,

it is imperative that each packet be forwarded as quickly as possible. Accordingly,

switches typically precompute a forwarding table that dictates which neighbor leads

to which destination. Forwarding can then be accomplished by simply inspecting the

packet’s headers for its destination, consulting the precomputed table, and sending

the packet to the corresponding neighbor.

The process of computing a forwarding table is called routing. Unlike forwarding,

routing requires a wider view of the network, in order to figure out which neighbors

can reach which destination. Routing should also be reactive to changing network

conditions (e.g. a new switch is added, or a link suddenly fails). However, routing is

not as time-critical as forwarding.

22

2.1.3 Data Plane and Control Plane

The split between forwarding and routing illustrates a key conceptual distinction

between a network’s data plane and control plane. The term “data plane” (or

“dataplane”) refers to the parts of a network that run at high speed, directly on opti-

mized switch hardware; forwarding is the quintessential dataplane task. In contrast,

the “control plane” is the part of the network that configures the data plane, and

takes care of more complex and less time-critical tasks such as routing.

Typically, control-plane tasks run on a general-purpose CPU, which may or may

not be physically located on a switch. As a result, such tasks are orders of magni-

tude slower than dataplane tasks, which run at “line rate” directly on the switch’s

packet-processing hardware. The tradeoff is that CPUs are more flexible, and hence

can perform operations that are infeasible or impossible on hardware that has been

optimized for packet processing.

2.1.4 Common Applications

Recent years have seen several developments in dataplane programming; that is,

writing programs which run in the data plane, as opposed to using fixed-function,

preconfigured hardware. These may be used either to introduce new kinds of func-

tionality, or to move algorithms out of the control plane into the data plane. In the

latter case, those algorithms benefit from the much faster speeds and lower latency

offered by the data plane, but only if they can be made to work within the more

restricted packet processing hardware.

Routing algorithms Typically, the data plane handles forwarding while the con-

trol plane handles routing decisions. However, network conditions often change

quickly – links might go up or down, and different routes may see higher or lower traf-

fic. In comparison to the speed of traffic (“line rate”), the control plane is very slow

23

to respond to these sorts of changing conditions. A dataplane routing algorithm like

Hula [45] or Contra [38] can allow switches to make intelligent forwarding decisions

at line rate, reacting to changing conditions orders of magnitude faster.

Middleboxes Although networks provide the abstraction of simple packet delivery,

they often contain additional functionality such as traffic filtering (firewalls), transfor-

mation (Network Address Translators (NATs)), traffic manipulation (load balancers),

and security (Intrusion Detection Systems (IDSs) or DDos Protection). Typically,

this functionality is provided by a specialized piece of hardware inserted into the net-

work between switches (a middlebox), though some might also be implemented in

the control plane. Both approaches have downsides: as before, the control plane is

slow to react, while middleboxes must be bought and maintained separately, and per-

form a specific task with limited ability for configuration. Moving this functionality

into a programmable dataplane allows network operators to solve both problems.

Telemetry A crucial aspect of operating a modern network is measurement. Net-

work operators are always looking for a more granular or detailed view of their network

so they can understand its behavior. This knowledge might be used either to debug

problems or to optimize packet processing. Dataplane programs provide a natural av-

enue for taking these measurements: they inherently operate at line rate, have direct

access to the fields of a packet, and can perform stateful operations like aggregation

to provide meaningful statistics to network operators.

Novel applications The advent of programmable dataplanes has seen the intro-

duction of entirely new kinds of functionality. For example, NetCache [41] allows

a programmable switch to act as a cache for a database server, by storing popular

queries and responding directly to clients when they send a query it has cached. By

allowing the network itself to take on this functionality, the database operator can

24

reduce load on their servers while also potentially decreasing their average response

time.

2.2 PISA Switches

Many modern programmable switches, including the Intel Tofino [1], have adopted

the Protocol-Independent Switch Architecture (PISA), in which packets are

processed by a pipeline of stages, each of which does a small piece of work before

passing the packet to the next stage. The pipeline is configurable, allowing users to

reprogram its behavior. Importantly, the pipeline processes packets at a fixed rate,

regardless of the program it’s running. As a result, optimizing PISA programs is not

a matter of ensuring that they run faster, as it often is for regular programs; instead,

the goal is to make sure the program fits inside the pipeline in the first place.

2.2.1 PISA Overview

At a high level, a PISA switch consists of two pipelines with a traffic manager

(TM) between them. The ingress pipeline processes incoming packets, chooses

where (if anywhere) they should be sent, and sends them to the traffic manager. The

TM is responsible for queuing packets while they wait to be forwarded, and selecting

which one to forward next. Finally, the egress pipeline processes packets on their

way out of the switch, though the available operations are more restricted (e.g. it

cannot choose which port to send the packet out of, since that was already determined

in ingress).

Both pipelines share a common structure, depicted in Figure 2.1: they begin with

a parser, which translates incoming packets into structured data. This data is stored

in special header fields called Packet Header Vectors, which are discussed more

in §2.2.4. The parsed data is passed to a series of stages, which perform the actual

25

Figure 2.1: A high level overview of a PISA pipeline, taken from Butun et al. [17].
It demonstrates the most important components: the parser and deparser, and the
processing stages in the middle, each of which has some persistent memory (at the

top), and ALUs for performing computation at that stage.

26

packet processing. Finally, the pipeline ends by sending the packet to a deparser,

which transforms the packet’s structured data back into a stream of bytes.

2.2.2 Parsers and Deparsers

Like the rest of the pipeline, parsers and deparsers are programmable, and must

be configured to parse the types of packets traveling through the network. This

requires the user to define the set of possible headers in advance, along with rules for

extracting those headers from the packet’s raw bytes. Usually, not all of the packet

will be parsed; the remaining bytes are called the payload1. Since the payload is

unstructured, the pipeline does not operate on it, and it passes through unchanged.

The parsed headers are passed to the first stage of the pipeline, along with metadata

such as the time the packet came in and on what port.

The inverse operation is applied at the end of the pipeline. During processing,

headers may be added, removed, or modified. When processing finishes, the deparser

simply emits each header as a stream of bytes, followed by the payload. Note that the

outgoing packet may have significantly different headers from the incoming packet.

2.2.3 Packet Processing Pipelines

Between the parser and deparser, PISA pipelines are comprised of a series of stages.

Packets move forward through the pipeline, spending one clock cycle at each stage. At

most one packet can be at each stage, and there is no direct communication between

the stages apart from the packet itself. This means the pipeline is atomic: although

multiple packets may be in the pipeline simultaneously (each at a different stage), the

pipeline’s observable behavior is always the same as if the packets were sent through

one-at-a-time.
1Note that this is a slightly different definition of “payload” than before – in this case, the payload

might include several layers of unparsed headers, as well as the packet’s actual message.

27

Anatomy of a stage Each stage has several components, the most crucial of which

are depicted in Figure 2.1. Each stage has many Arithmetic Logic Units (ALUs),

which can be used to perform simple binary operations on integers. The stage also

contains a certain amount of persistent memory called registers, as well as a small

number of stateful ALUs (sALUs), which are capable of reading and writing that

memory. Registers are crucial for dataplane programming because they are the only

information that persists between packets; any stateful program must store its state

in the registers.

Each register can only be accessed by one sALU per clock cycle. Since packets

spend only one clock cycle at each stage, this means that a single packet cannot access

the same register twice. Each sALU provides the ability to both read and write in

a single clock cycle, and can perform some very restricted computation in between.

However, several common design patterns are disallowed such as reading some data,

performing a series of manipulations, and writing the result back to memory later.

To implement these, one could send a packet back to the beginning of the pipeline to

be processed again (recirculation), however, this is very expensive2.

On the Tofino On the Intel Tofino, each stage also contains several hash units

which can perform CRC hashes with a polynomial seed. Furthermore, each stage has

a small number of gateway tables at the beginning of the stage, which are capable

of performing very limited boolean computation (comparing a variable to another

variable or a constant). Although all ALUs and sALUs operate simultaneously within

a stage, hash units and gateway tables execute beforehand, meaning their results can

be used by ALUs in the same stage.

For example, normally the snippet
2See §2.2.5 for more information.

28

1 if(x < y) {

2 z = z + 1;

3 }

would require two stages to execute: one to compare x and y, and another to increment

z. However, if we implement the comparison using a gateway table, both operations

can be fit into a single pipeline stage.

Match-action tables The behavior of a stage is defined by the match-action

tables it contains. Match-action tables are used to change the behavior of the switch

for different packets. The match statement below demonstrates the semantics of a

match-action table.

1 match x, y with

2 | 17, 54 -> printf "Branch 1"

3 | 17, _ -> printf "Branch 2"

4 | _, 42 -> printf "Branch 3"

5 | _, _ -> printf "Default branch"

This statement matches the variables x and y against several patterns, testing

to see if they have the designated values. The first branch will be executed if x and y

have values 17 and 54, respectively. The underscore character is a wildcard character,

which matches everything. Hence the second branch will be executed if x has value

17, regardless of the value of y; similarly, the third branch will be executed if y has

value 42.

Patterns are matched from top to bottom, with only the first matching branch

being executed. Hence if x is 17 and y is 54, only branch 1 will execute. The last

branch is always a “default” branch, with all-wildcard patterns.

The only difference between match statements and match-action tables is that

instead of matching on variables, match-action tables match on designated bits of the

packet header, and patterns are provided for each bit – either the constant patterns

1 and 0, or the wildcard pattern *, which matches either value. In a match-action

29

table, each branch is called a rule, and the body of each rule is called an action.

Types of match-action table Some match-action tables can be modified by the

control plane while the switch is running, adding or removing rules. Such tables

are called dynamic tables, and are exposed to the control plane during runtime.

Tables that cannot be modified are called static tables, and are not visible outside

the program. Static tables are advantageous when compiling a program because the

compiler is free to modify them (for example, by merging two tables), so long as doing

so does not change the semantics of the program. Since dynamic tables are visible

to the outside world, the compiler is unable to change them without changing the

interface to the control plane.

Separately, a table that contains no wildcard patterns in any of its rules is called

an exact table; otherwise, it is a ternary table. Exact tables are significantly cheaper

in terms of memory – they can be implemented in the switch’s plentiful supply of

SRAM3, while ternary tables must fit into the much more limited TCAM4. Putting

these together, we have four types of match-action table, based on two parameters:

static vs. dynamic, and exact vs. ternary.

Behavior of a stage Each stage contains several match-action tables, which si-

multaneously match on their designated header fields and execute their chosen action.

Each action operates using a subset of the ALUs and sALUs; there is no communi-

cation between these, so each action’s operations are necessarily independent of each

other. Once the ALUs are done executing, the packet is passed on to the next stage

of the pipeline (or the deparser, at the end).
3Static Random-Access Memory.
4Ternary Content-Addressable Memory.

30

2.2.4 Packet Header Vectors

While a packet is being processed, temporary data (such as local variables and parsed

header fields) is stored in the packet itself, in temporary headers called Packet Header

Vectors (PHVs). Each PHV is a cluster of slots of the same width (typically 8, 16, or

32 bits). The number and size of PHVs is the same for every packet. Local variables

and parsed headers are allocated to PHV slots at compile time. Variables can be

partitioned across slots: a 16-bit variable might be stored in a 16-bit slot, two 8-bit

slots, or half of a 32-bit slot (perhaps with the other 16 bits going to a different

variable).

During execution, ALUs and hash units read and write from PHV slots. Hash

units may read and write from any slot to any other slot without restriction. However,

both kinds of ALU may only read and write to slots in a single cluster. This imposes

constraints on where variables are stored: if one wants to first add together x and

y, then add z to the result, all three variables must be located in the same cluster.

Furthermore, each PHV slot may only be accessed by one ALU per stage. This means

that it can be dangerous to store multiple variables in a single slot, since only one of

those variables can be operated on at a time.

2.2.5 Recirculation

The linear and finite nature of pipelines means that sophisticated applications may

not be able to express all their logic in a single pass through the pipeline. This

might happen because the program simply takes too many stages, but it might also

happen because the program needs to access some registers multiple times, which is

impossible in a single pass since each packet only spends one clock cycle at each stage.

To implement such behavior, a programmer can send a packet back to the be-

ginning of the pipeline to be processed again, with different header fields that cause

different actions to be taken at each stage. This is called recirculation, and it is a

31

powerful technique for dataplane programming. Recirculation is done by sending the

packet to a special recirculation port on the switch, rather than (or in a addition

to) an exit port. After arrival, the recirculated packet is parsed and processed like

any other incoming packet.

Recirculation’s power comes with harsh downsides, however. Each recirculated

packet consumes bandwidth that could have been used to process traffic. If every

traffic packet generates one recirculated packet, half of the switch’s processing power

will be devoted to processing those recirculations, effectively halving its bandwidth!

Furthermore, recirculation is difficult to express in a low-level dataplane programming

language like P4; though it can be done, it involves significant work and switch

configuration, and is both tedious and error-prone.

2.3 Programming PISA Switches

2.3.1 P4

The de facto standard language for programming PISA switches is P4 [14]. The

original version [58] of P4 was designed specifically for PISA switches, and includes

many switch-specific constructs, like match-action tables, as primitives. The most

recent version[59] covers additional architectures beyond PISA, such as SmartNICs.

P4 can be thought of as an “assembly language” for switches: it is a low-level

language that provides direct representations of the underlying hardware, with rela-

tively few abstractions. This allows programmers to fully exploit the power of pro-

grammable pipelines, and modern industry work on dataplane programs is almost

exclusively done using P4. Indeed, the introduction of P4 was critical to enabling

most modern dataplane programming research.

Unfortunately, P4’s power comes at a price: it makes many of the same tradeoffs

as traditional assembly languages. Although it is powerful, and allows the user a high

32

1 apply {
2 if (hdr.ip.dstip == 1){
3 tmp = reg1_r.execute(0);
4 hdr.ip.dstip = reg2_rw.

execute(0);
5 } else {
6 tmp = reg2_r.execute(0);
7 hdr.ip.dstip = reg1_rw.

execute(0);
8 }
9 }

(a)

1 apply {
2 tmp = reg1_r.execute(0);
3 hdr.ip.dstip = reg1_rw.execute(0);
4 }

(b)

(c)
Figure 2.2: The p4 snippets in (a) and (b) both result in the same error – an
ordering error – but no indication of where it comes from or how to fix it (the

@stage suggestion will not help in this case)

degree of control, the lack of abstractions leads to verbose and difficult-to-understand

code. Worse, the low-level nature of the language means that error messages are often

confusing, and provide little help in diagnosing the root cause. For example, the P4

program snippets in Figures 2.2a and 2.2b both result in the same error message

(Figure 2.2c), but do not explain where in the program the error comes from or how

to fix it (the suggested @stage annotation will not help in this case). As a result, there

are many sophisticated applications that could be implemented on the hardware, but

which have never been written because doing so in P4 is just too frustrating.

2.3.2 Why is P4 programming hard?

The restrictions of the PISA architecture and the low-level nature of P4 combine to

make sophisticated applications frustrating, tedious and error-prone to write.

Hardware restrictions The most fundamental challenge of dataplane program-

ming is ensuring the programs fit within the limited resources of the switch, while

executing in the limited environment of a pipeline. Data structures must fit in mem-

33

ory; operations must be assigned to ALUs, and all of this must fit within the dozen-

or-so stages of the pipeline. The problem gets more complex when data dependencies

are considered, which spread operations across multiple stages, stretching out the

pipeline.

A particularly notable class of error that can arise is called an ordering error.

These errors are a by-product of the linear nature of a pipeline, and are caused when

different parts of a program wish to access two pieces of memory in opposite orders.

For example, one function accesses register A and later register B; another function

accesses B first, then A. Since the registers are laid out along the pipeline, these

functions impose contradictory constraints on the compiler: the first requires A to

appear in an earlier stage than B, while the second requires the opposite. Fixing an

ordering error requires the code to be reworked so that all parts access memory in a

consistent order.

Low-Level Primitives The example of ordering errors highlights another diffi-

culty of modern dataplane programming: P4 is a very low-level language, and using

it involves directly configuring different parts of the hardware. In the pipeline, this

involves creating match-action tables, defining the headers fields they match against

(be sure not to miss any!), and writing the actual computation in the form of individ-

ual actions. It also involves configuring parsers and deparsers to read and write the

appropriate header fields, including metadata fields controlling the fate of the packet

(e.g. its destination port).

One significant challenge that arises due to the low-level nature of P4 is implement-

ing recirculation. In order to recirculate a packet, a user must (1) set the destination

port to the switch’s designated recirculation port, (2) set metadata flags indicating

that the packet has been recirculated, plus any additional relevant information, and

(3) update every part of the pipeline to check for that flag and perform a different

34

Figure 2.3: Output of the p4 compiler when presented with an ordering error.

Figure 2.4: Possible outputs of the p4 compiler when presented with an invalid
RegisterAction. Note that the p4 program contains no reference to phvs, SALUs, or

instructions and their operands.

action if it is present. If multiple types of packets need to be recirculated, this process

must be repeated for each of them. Missing a single step can cause mysterious and

hard-to-debug errors where a single part of the pipeline is wrong, causing a cascade

of non-obvious effects.

A similar issue arises when trying to interleave processing of different packet types.

Each table must ensure that it is applying an action appropriate for the current packet,

and getting it wrong in a single stage could cause a chain of bizarre errors.

Incomplete Compilation Modern dataplane languages also lack abstractions for

hardware restrictions. Certain operations are fundamentally impossible to execute

on a PISA switch in a single pass through the pipeline; memory accesses that lead

to ordering errors are a good example. Other operations are limited in unclear or

target-dependent ways. For example, the Tofino’s sALUs are capable of performing a

limited amount of work at the same time as they read or write memory. However, no

language represents exactly what these limitations are; furthermore, different models

of switch will have different limitations.

Synthesis-Based Compilation There has been substantial work on compilers for

P4, and dataplane languages in general, which use synthesis techniques to generate

35

layouts for their programs. Indeed, all the dataplane languages described in the next

section use some variant of synthesis for their compiler. Synthesis-based techniques

are powerful – they can provide a guarantee that if the program is compilable, the

compiler will succeed. However, these techniques also have a downside: if the program

fails to compile, they typically provide little or no useful feedback about why. This

makes it very difficult to figure out what’s wrong with a particular program, much

less how to fix it.

Poor Portability Different hardware implementations of a PISA Pipeline don’t

necessarily have the same expressive power5. Different switches have different restric-

tions and idiosyncrasies that constrain the programs they can support. This means

that although P4 programs are theoretically portable (able to run on multiple dif-

ferent targets), in practice a program developed for one device will be specialized to

that device’s capabilities. Attempting to compile that program to a different target

may or may not succeed, depending on whether that program happens to satisfy the

restrictions of the other target as well.

Optimization Even once a program is written, compiled, and deployed, it may still

not perform well in practice. Dataplane programs typically involve several parameters

that govern their performance, often involving apportionment of the switch’s limited

resources (e.g. how much memory is allocated to each data structure). Varying these

parameters can have drastic effects on the program’s performance, but the relationship

of each parameter to the final outcome is complicated. It is often difficult to predict

how tweaking a single parameter will affect performance; determining optimal values

for each of them is even harder.

Furthermore, PISA programs are optimized on different criteria than standard,

general-purpose programs. Typically, a CPU program will try to minimize execution
5Unlike, say, Turing Machines.

36

speed and/or memory usage. In contrast, dataplane programs always execute at the

same speed (the speed of the pipeline), and have fixed memory footprints (allocated

at compile time). As a result, there is no point trying to make programs “go faster”.

Instead, dataplane optimization targets high-level behavior (e.g. the hit rate of a

cache), as well as trying to ensure that the program fits into the pipeline in the first

place (e.g. it does not require more stages than are available).

The standard method for optimizing dataplane programs is to compile the pro-

gram, and test its performance either on a test switch or in a simulator. Unfortu-

nately, both steps are slow: P4 compilation can takes anywhere from minutes to

hours to days in extreme cases. Similarly, the proprietary Tofino simulator processes

only 1 packet per second, an untenable speed when tests involve processing tens or

hundreds of thousands of packets.

2.3.3 Other dataplane languages

Since the introduction of P4, researchers have developed several higher-level dataplane

programming languages, each of which addresses some of the above issues.

Lyra Lyra [31] is a high-level language providing a “one big switch” abstraction

to its users. A network operator writes their code as if it were being processed by

a single switch with generic operations. The Lyra compiler then uses optimization

and synthesis techniques to compile this program to several different switches in the

network, allocating different parts of the functionality to different switches.

Lyra does a good job of raising the level of abstraction over P4, by providing

generic primitives instead of switch-specific ones, and allowing users to reason about

a single switch instead of many. However, when its compiler fails to synthesize a

working program, the user receives no useful feedback. If a program contains an

ordering error, or attempts to do too much computation while accessing registers,

37

they will not be informed of this, and will be unable to easily figure out how they

should adjust their program. Furthermore, the level of abstraction could be raised

higher, as it is still centered around switch pipelines and explicitly manipulating

header fields. Finally, while Lyra’s compiler automatically tries to ensure programs

fit into switch pipelines, it does not help with the issue of optimizing the behavior of

programs.

Domino, Chipmunk, and CaT Domino [70] is another high-level language which

provides an abstraction called packet transactions that capture the application

logic for processing a single packet. Transactions are compiled into a series of atoms,

which are individual pieces of computation that a switch can process in a single

stage. A program can also contain guards, which are predicates describing which

transaction(s) to run on a given input packet.

Domino provides a higher-level view of the switch hardware than Lyra; transac-

tions are represented as sequential imperative code, and the compiler automatically

breaks them down into atoms (which correspond to actions in the switch’s pipeline).

Notably, Domino provides a way of representing differences in switch hardware: dif-

ferent switches can define different atoms that they support. However, the Domino

compiler targets an abstract “Banzai” virtual machine model, rather than any physical

hardware, and does not contain representations for important hardware restrictions

such as ordering errors. Furthermore, the compiler uses synthesis to map transactions

into sequences of atoms; this process may fail unhelpfully or take a long time. Domino

also provides no easy solution for optimizing programs without deploying them.

Chipmunk [32] is an extension of Domino’s compiler that introduces a new com-

pilation technique called slicing. Slicing reduces compile times significantly, and

increases the chance that synthesis will succeed. The Chipmunk compiler also pro-

vides the ability to compile to the Intel Tofino, a more practical target than the Banzai

38

machine model. However, Chipmunk is still synthesis-based, which comes with the

same downsides of unhelpful errors upon failing and potentially long compile times.

CaT [33] is a compiler for P4 programs which addresses several of the downsides

of synthesis-based compilation, by decomposing the compilation process into three

phases (Transformation, Synthesis, and Allocation) based on the Domino/Chipmunk

transaction framework. Each phase presents a smaller, and thus hopefully more

tractable, synthesis problem. Doing so allows them to compile more programs than

existing compilers, and do so faster. However, the phases are ultimately still synthesis-

based, and thus inherit the same downsides as Domino and Chipmunk.

P4All P4All [36] is an extension of P4 that introduces the ability to declare flexibly

sized data structures by defining symbolic variables to represent their memory

allocation. For example, a series of arrays might have two parameters: one for the

length of the arrays (in bits), and another for the number of arrays in the series.

The user must then write a formula relating the size of the data structure to the

performance of the program (e.g. the relation between the sizes of a multi-stage cache

and its overall hit rate). This formula is optimized using Integer Linear Programming

(ILP) to produce a program that both fits within the switch’s pipeline, and has

optimized high-level behavior.

Unlike the other languages, P4All provides a way to optimize programs before

they are deployed. However, the optimizer requires a closed-form formula that can

be solved via ILP; deriving such a formula requires significant theoretical work that

is infeasible for most users. Furthermore, P4All does not provide any additional

abstractions on top of P4, meaning that it inherits most of the downsides of P4,

including tedious programming and unhelpful errors.

39

Chapter 3

The Lucid Language

Lucid is a high-level, event-driven PISA programming language whose fundamen-

tal goal is to make dataplane programming easier. As dataplane programs, Lucid

programs run inside a switch’s packet processing pipeline, but users need not worry

about manually configuring those pipelines. Instead, Lucid code takes an impera-

tive, C-like form, and comes with several mechanisms, including a novel type system,

for helping ensure Lucid programs will compile. Lucid’s high level of abstraction

makes it accessible even to novices without detailed knowledge of hardware or net-

work programming, and helps experts to write sophisticated applications that would

be infeasible to express using a lower-level language like P4.

3.0.1 Attribution

The Lucid language syntax and features were designed collaboratively by the author,

John Sonchack, and David Walker. A description of the language appears in the orig-

inal Lucid paper [73]. The first section of this chapter is modeled on the description

given there.

40

3.1 Lucid by Example

As an introduction to Lucid’s main features, we will look at several simple Lucid

programs: first a basic traffic processing/monitoring application, and then several

increasingly sophisticated implementations of a Bloom Filter, a common networking

data structure. The code we display below is actual Lucid code.

In this section, we will illustrate the following features of Lucid:

1. How to use events and handlers to define the behavior of a Lucid program.

2. How to use persistent memory to retain information about packets, and how

to use that information to affect the processing of future packets.

3. How to use Lucid’s module system to create an abstract interface for data

structures, allowing different implementations to be swapped out seamlessly.

4. How to use vectors and loops to support data structures with sizes that are

determined only at compile time.

3.1.1 Event-based Dataplane Programming

Throughout this section, we will refer to Figure 3.1, which shows a simple Lu-

cid program that forwards IPv4 traffic while periodically sending heartbeats to a

controller, and alerting the controller about any unexpected traffic.

The core abstraction of Lucid is that of an event. Each event represents something

happening in the network, such as a packet arriving at a switch, a link failing, or

receiving a request to perform a control task like updating a firewall. Whenever

these happen, the corresponding event is generated at one or more switches. The

fundamental behavior of a Lucid program is to react to incoming events.

The set of possible events handled by a Lucid program is declared by the pro-

grammer; in Figure 3.1, those events are eth, unexpected_etherty, heartbeat,

41

1 // The eth event represents an incoming ethernet packet. Its arguments are
2 // the 48-bit MAC destination and source headers, the 16-bit ethertype
3 // header, and an abstract payload representing the rest of the packet
4 packet event eth(int<48> dst, int<48> src, int<16> etherty, Payload.t p);
5 // This alerts the controller if we get an event with a non-IPv4 ethertype
6 event unexpected_etherty(int<48> src, int<16> etherty);
7

8 // Send regular heartbeats to the controller so it knows we're still alive
9 event heartbeat(int count);

10 event send_heartbeat(int count);
11

12 // Handlers specify what to do when an event arrives at the switch
13 handle eth(int<48> dst, int<48> src, int<16> etherty, Payload.t p) {
14 // Alert controller if we get a non-IPv4 packet
15 if(etherty != 0x0800) {
16 // Create a value representing the alert event
17 event alert = unexpected_etherty(src, etherty);
18 // Send the event out the hardcoded port connected to the controller
19 generate_port (CONTROL_PORT, alert);
20 } else {
21 // If everything's fine, forward the packet unchanged
22 generate_port (OUT_PORT, eth(dst, src, etherty, p))
23 }
24 }
25

26 // Send a heartbeat to the controller at regular intervals
27 handle send_heartbeat(int seq) {
28 generate_port (CONTROL_PORT, heartbeat(seq));
29 event next = send_heatbeat(seq + 1);
30 // Send next heartbeat in 1000 ns
31 next = Event.delay(next, 1000);
32 // generating without a port sends the event to ourself
33 generate next;
34 }
35

36 // We should never receive these events, so just drop them
37 handle heartbeat(int count) { skip; }
38 handle unexpected_etherty(int<48> src, int<16> etherty) { skip; }

Figure 3.1: A basic Lucid program that performs three functions: forwarding IPv4
traffic, reporting non-IPv4 traffic to a controller, and sending regular heartbeats so

the controller knows it’s still running.

42

and send_heartbeat. Each event carries data deemed relevant by the programmer.

For example, eth, which represents an ethernet packet, carries the first three ethernet

header fields, followed by the contents of the packet (the “payload”). On the other

hand, heartbeat, which represents a message to the controller, carries only the in-

formation it wants to communicate – in this case, a sequence number, so that missed

heartbeats can be detected by the controller.

Lucid distinguishes two kinds of events: packet events and background events.

Packet events are a direct representation of an incoming traffic packet, and their

arguments represent that packet’s headers (and optionally its payload). All other

events are background events, and their meaning is entirely defined by the program-

mer. They are so named because they operate asynchronously “in the background”

while the switch is processing regular traffic. Common uses for background events are

updating or cleaning persistent memory, or communicating among switches running

the same Lucid program.

Handlers Every event has a corresponding handler (lines 13 and 27 in Figure

3.1), which defines the actions to take when that event arrives. Handlers are atomic

– although a switch can process multiple events at the same time, the results are

always the same as processing them individually.

Compilation Note: Events and Handlers Under the hood, every event corre-

sponds to a packet, and every handler is executed in the switch’s packet processing

pipeline. Packet events are literal traffic packets, while background events are eth-

ernet packets with a special ethertype value. In both cases, the event’s arguments

are represented as special header fields. The Lucid compiler automatically generates

header formats and parsers for background events. For simple programs, the parser

for packet events may be automatically generated; otherwise, it must be written by

the user, as described in §3.2.10.

43

Generating events In addition to receiving events, Lucid programs are capable

of generating new events. In the case of packet events, this corresponds to sending

out a packet whose headers are determined by the event arguments. For background

events, it means that an event with the given arguments appears at the destination.

Events always appear at a particular switch in the network, specified when the

event is generated. Sending events to other switches is done via the generate_port

keyword, which lets the user specify which port the event should be emitted from.

Switches can also send events to themselves using the generate keyword; this can be

useful for triggering sub-tasks or, as in Figure 3.1 (Line 34), for repeatedly running

the same handler in a loop.

In some cases, the programmer might not want an event to be executed imme-

diately. This is common for background tasks that should be periodically executed,

as with the send_heartbeat event in Figure 3.1. To facilitate this, events can be

delayed using the Event.delay function. When a delayed event is generated, it is

instead added to a buffer, and is emitted only after its delay has elapsed.

Interleaving control tasks One of the great strengths of Lucid is its ability to eas-

ily write programs that perform several unrelated tasks simultaneously. The program

in Figure 3.1 is a good, if basic, example: it combines the tasks of traffic processing,

traffic monitoring, and sending heartbeats. Writing an equivalent program in P4

would be much more complicated. To give a brief summary, the user must

1. Distinguish which type of packet is being processed at a given time,

2. Take different types of actions at each stage based on packet type,

3. Configure the hardware to enable recirculation

4. Manually copy and annotate packets for recirculation, and

44

Figure 3.2: A Bloom filter with k = 3 and m = 5. Each array is associated with a
hash function (f, g, or h), which produces an index; when an element is added, each

array applies its hash function and sets the corresponding bit to 1.

5. Manually manage the hardware’s packet queue to ensure delayed events are

emitted at the right time.

In Lucid, all these tasks are handled automatically by the compiler. The programmer

can add new threads of control to any program simply by declaring more events,

without changing any existing code.

3.1.2 Bloom Filters

Bloom filters are a commonly used data structure in networking applications, forming

the foundation of many dataplane algorithms. A Bloom filter is a probabilistic repre-

sentation of a set, with two operations: adding an element, and checking membership.

Membership queries may return false positives, but never false negatives.

On a switch, Bloom filters are typically implemented as a series of k bit arrays

of length m, each of which is associated with a different hash function1. Each array

element is initialized to 0. To add an element, that element is hashed with each

function to produce an index into the associated array; that index is then set to 1.

This process is illustrated in Figure 3.2.
1On a general-purpose computer, a Bloom filter may also be implemented as a single array of

length m; however, doing so is infeasible on a switch due to the linear nature of the packet processing
pipeline.

45

1 const int m = ...;
2 // Declare two 1-bit arrays with m entries each, initialized to 0
3 global Array.t<1> a0 = Array.create(m);
4 global Array.t<1> a1 = Array.create(m);
5 const int s0 = ...; // Seed for first hash function
6 const int s1 = ...; // Seed for second hash function
7

8 // Add item to filter
9 fun void add(int item) {

10 int idx0 = hash(s0, item);
11 int idx1 = hash(s1, item);
12 Array.set(a0, idx0, 1);
13 Array.set(a1, idx1, 1);
14 }
15

16 // Return true if item in filter
17 fun bool query(int item) {
18 int idx0 = hash(s0, item);
19 int idx1 = hash(s1, item);
20 int<1> b0 = Array.get(a0, idx0);
21 int<1> b1 = Array.get(a1, idx1);
22 return (b0 == 1 and b1 == 1);
23 }

Figure 3.3: A basic Bloom filter with k = 2. Functions add and query may be
called from many different handlers.

Membership queries perform the same hashes, and return true if and only if

each index was already set to 1. A false positive might therefore occur if all the

indices happened to already be set to 1. The rate of false positives can be reduced

by increasing k and/or m, at the cost of more memory usage.

3.1.3 Persistent Memory

Bloom filters are a persistent, stateful data structure; if one event adds an element

to the filter, then future events should be able to observe that change. Lucid provides

access to the switch’s persistent memory in the form of global values (often referred

to as simply “globals”). The most basic global value is an array of integers. Figure

3.3 shows a how arrays may be used to define a very basic Bloom filter program with

k = 2.

Globals are declared using the global keyword, as shown in Figure 3.3 (lines

46

Figure 3.4: The output of the Lucid compiler when an ordering error is detected in
a function. Note that the specific offending line is highlighted, allowing users to

jump right to the appropriate part of their program for debugging.

3-4). Globals are always declared at top-level (never inside a handler), hence the

name. The type of arrays in Lucid is Array.t<sz>, where sz is a size – an integer

representing a bitwidth (in this case, the number of bits in each slot of the array). The

program in Figure 3.3 creates two arrays with m 1-bit slots each, using the constructor

Array.create.

Arrays can be accessed from handler bodies, using the Array.set and Array.get

methods, as shown in Figure 3.3 (lines 12-13, 20-21). The set method takes the

array, the index to modify, and the value to set it to; the get method takes only the

array and the index to read from.

Ordering errors The nature of PISA pipelines means that there are several re-

strictions on the way arrays can be accessed in a single handler. Fortunately, Lucid’s

type system enables us to provide a simple, high-level description of the restrictions:

specifically, globals must be used in the order they are declared, and no more than

once each. As an example, it would be impermissible to swap lines 13 and 14 in in

Figure 3.3, since that would result in using a1 before a0, even though a0 was declared

first. Any operation that reads from or writes to an array counts as a “use” for this

purpose.

We call this restriction the ordering restriction, and refer to the order of the

global variables in a program as the global order. The ordering restriction must

hold along every control path in the program separately, so it is permissible to, for

47

1 interface BloomFilterInterface {
2 global type t;
3 constructor t create(int m, int seed0, int seed1);
4

5 fun void add (t filter, int item);
6 fun bool query(t filter, int item);
7 }

Figure 3.5: A simple interface for a Bloom Filter module

example, use the same global in both branches of an if statement2. Violating the

global order results in an uncompilable program, and is referred to as an ordering

error.

When an ordering error occurs in a Lucid program, our compiler generates an

error message pointing the user to the appropriate part of their program, as shown in

Figure 3.4. We describe ordering errors in more detail, as well as the way we detect

them, in Chapter 4.

3.1.4 Modules and Records

The program in Figure 3.3 suffices to implement the basic behavior of a Bloom

filter. However, the implementation is not at all abstract: all the components of

the filter (the arrays and seeds) are declared globally at top level, and hence can be

accessed by any part of the program. This makes it possible for some completely

separate part of the code to modify the filter arbitrarily, potentially breaking its

invariants (for example, zeroing out an index might lead to false negatives). Further-

more, the behavior of the filter is hard-coded; one would have to duplicate all the

code if one wished to employ two filters simultaneously.

To provide abstraction and facilitate re-use, Lucid provides a simple module sys-

tem patterned after OCaml’s [57]. A Lucid module is a block of code defining types,

functions and/or events. Every module has an interface that describes which parts
2Not all globals need to be used in a particular path; it is allowed to “skip over” globals, though

doing so forfeits the opportunity to access the skipped globals.

48

of the module are visible to the outside world. Figure 3.5 shows a simple interface

for a Bloom filter module; it declares an abstract global type t as well as the add and

query functions.

The body of the module is shown in Figure 3.6. In order to present the abstraction

of a single type representing a Bloom filter, the arrays and seeds are combined into a

single compound record type, as shown on lines 3-8. Since this type is abstract, the

module also provides a constructor, which can be called inside of global declarations

to create values of that type. Finally, the add and query functions are largely the

same as before; however, rather than always operating on the same two arrays and

seeds, they take the filter as an argument, and use the record projection operator #

to retrieve its component values.

This modularized version is much more convenient than the hardcoded one. Since

the type is abstract, users can only access it via add and query, and hence cannot

accidentally break any invariants. Furthermore, users can easily create multiple filters

in a single program using the constructor, and access them with the same set of

functions. Finally, if the user wishes to change the implementation of the filter, they

can do so without worrying about breaking code that uses it. So long as the filter

maintains the same interface and high-level behavior, different implementations can

be swapped out seamlessly.

3.1.5 Vectors and Loops

There is still one problem with our treatment of Bloom filters. Although swapping out

different implementations is easy due to the increased abstraction, actually writing

those implementations is likely to involve a significant amount of code duplication.

For example, increasing k to 3 by adding an additional array and hash seed requires

the programmer to redefine the type t, update its constructor, and write new add and

query functions that expect exactly 3 arrays. In general, each value of k requires a

49

1 module BloomFilter : BloomFilterInterface = {
2 // An abstract record type, with definition hidden from module clients
3 type t = {
4 array<1> a0;
5 array<1> a1;
6 int s0;
7 int s1;
8 }
9

10 // A compile-time function for creating global values.
11 constructor createFilter(int m, int seed0, int seed1) = {
12 a0 = Array.create(m);
13 a1 = Array.create(m);
14 s0 = seed1;
15 s1 = seed2;
16 }
17

18 // Add item to filter
19 fun void add(t filter, int item) {
20 int idx0 = hash(filter#s0, item);
21 int idx1 = hash(filter#s1, item);
22 Array.set(filter#a0, idx0, 1);
23 Array.set(filter#a1, idx1, 1);
24 }
25

26 // Return true if item in filter
27 fun bool query(t filter, int item) {
28 int idx0 = hash(filter#s0, item);
29 int idx1 = hash(filter#s1, item);
30 int<1> b0 = Array.get(filter#a0, idx0);
31 int<1> b1 = Array.get(filter#a1, idx1);
32 return (b0 == 1 and b1 == 1);
33 }
34 }
35

36 // Using the constructor
37 global BloomFilter.t f1 = BloomFilter.createFilter(...);
38 global BloomFilter.t f2 = BloomFilter.createFilter(...);

Figure 3.6: An abstract, compound type for Bloom filters. The hash symbol # is
Lucid’s record projection operator.

50

completely new module whose code varies only in the number of arrays/seeds that

are processed.

Lucid provides a solution through the use of vectors, which are fixed-length lists

of values. The type of a vector contains its size – for example, the type int[4] is the

type of length-4 vectors of integers. Figure 3.7 shows how the module and interface

could be rewritten using vectors to allow for Bloom filters with arbitrary k.

In the rewritten version, the filter type t now takes a polymorphic size parameter

'k, similarly to arrays (the apostrophe indicates polymorphism, à la OCaml). The

definition of the type (lines 11-14), now contains exactly two fields, both length-k vec-

tors that store the arrays and the seeds, respectively. Line 18 shows how polymorphic

vectors (those whose size is a variable) can be initialized using vector comprehensions.

Operations on vectors are provided in the form of bounded for-loops, as shown

in the add and query functions. Each loop contains an index variable and an upper

bound. The size of each vector accessed with the index variable must exactly match

that upper bound, in order to prevent out-of-bounds accesses. Unbounded for-loops

are not feasible to implement, due to the linear nature of switch hardware.

3.1.6 Data structure libraries

We have now written a modular, flexible and re-usable implementation of a Bloom

filter. As Bloom filters are an important building block for dataplane algorithms,

this is quite useful! The module can easily be imported into a program using Lucid’s

C++-style #include directive, and used multiple times therein. Indeed, the Lucid

repository on Github contains a small library of general, abstract and re-usable data

structures that we have defined in this way, including a more sophisticated version of

the Bloom filter code shown here. Over time, we hope this library will grow to be a

useful resource for dataplane programmers, who currently find themselves frequently

re-implementing the same behavior.

51

1 interface BloomFilterInterface {
2 global type t<'k>;
3 constructor t<'k> create(int m, int['k] seeds);
4

5 fun void add (t<'k> filter, int item);
6 fun bool query(t<'k> filter, int item);
7 }
8

9 module BloomFilter : BloomFilterInterface = {
10 // An abstract record type, with definition hidden from module clients
11 type t<'k> = {
12 array<1>['k] arrs;
13 int['k] seeds;
14 }
15

16 // A compile-time function for creating global values.
17 constructor createFilter(int m, int<'k> seeds) = {
18 arrs = [Array.create(m) for m < k];
19 seeds = seeds;
20 }
21

22 // Add item to filter
23 fun void add(t<'k> filter, int item) {
24 for (i < 'k) {
25 int idx = hash(filter#seeds[i], item);
26 Array.set(filter#arrs[i], idx, 1);
27 }
28 }
29

30 // Return true if item in filter
31 fun bool query(t<'k> filter, int item) {
32 bool acc = true;
33 for (i < 'k) {
34 int idx = hash(filter#seeds[i], item);
35 int<1> b = Array.get(filter#arrs[i], idx);
36 acc = acc and (b == 1);
37 }
38 return acc;
39 }
40 }
41

42 // Using the constructor
43 global BloomFilter.t<2> f1 = BloomFilter.createFilter(1024, [0; 1]);
44 global BloomFilter.t<3> f2 = BloomFilter.createFilter(1024, [2; 3; 4]);

Figure 3.7: A Bloom filter module using vectors and loops to allow instantiations
with different values of k

52

types τ ::= ...

identifiers x ::= ...

declarations d ::= event x(τ0 x0, τ1 x1, ...);
| handle x(τ0 x0, τ1 x1, ...) { s }
| const τ x = e;
| global τ x = e;
| module x { ds }
| ...

declaration lists ds ::= d | d ds

statements s ::= s s
| τ x = e
| x = e
| if(e) { s } else { s }
| for(x < e) { s }
| ...

expressions e ::= v
| x
| e <binop> e
| e(e, e, ...)
| ...

values v ::= ...

programs p ::= ds

Figure 3.8: A simplified grammar of the core syntax of Lucid.

3.2 Advanced Lucid

Not every feature of Lucid is needed to implement a Bloom Filter. Now that the

reader is familiar with the basics of the language, we give a high-level survey of the

other important Lucid features.

3.2.1 Grammar Overview

Figure 3.8 provides a high-level, simplified grammar for the Lucid language. A

Lucid program is a series of declarations, which define events, handlers, modules,

and globals. The body of each handler is a statement, defining that handler’s control

flow. Statements may be nested using the sequencing operator s; s. Each statement

53

contains one or more expressions representing computations, such as arithmetic and

function calls.

The grammar in Figure 3.8 is meant to give an overview of the structure of a

Lucid program. As a result, it includes only the most basic language features. The

remaining features are described in the rest of this section.

3.2.2 Hashing

Lucid includes a hash operator, which is commonly used for computing array indices.

The syntax is as follows:

1 hash<sz>(seed, arg_1, arg_2, ..., arg_n);

The above operation produces a sz-bit integer by hashing together arg_1 through

arg_n using a CRC hash with seed as the seed. The expression may take any number

of arguments, which must be integers, booleans, or (possibly nested) compound types

containing only integers and booleans. Providing the seed 1 performs the identity

hash, which simply concatenates all the arguments together as strings of bits, and

truncates the result to sz bits.

3.2.3 Printing

When using the interpreter, Lucid allows users to print strings to the terminal using

the builtin printf statement, as shown below:

1 int count = ...;

2 printf("The current count is %d", count);

This function behaves much like printf in other languages, taking a string that

contains zero or more format specifiers beginning with %, and one argument for each

specifier. The arguments are substituted for the specifiers in order, and printed to the

terminal. Lucid supports two specifiers: %d for integers and %b for booleans. Print

54

statements are only executed in the Lucid interpreter, and are ignored otherwise.

3.2.4 Event destinations

We have already seen how events can be sent out a specific port using generate_port

or sent to oneself (recirculated) using generate. Lucid also supports two further ways

to determine an event’s destination in the network.

The first of these allows programs to send an event to a specific switch, regardless

of its location in the network, by supplying a switch id when the event is generated.

This can be done with the statement generate_switch (id, event). Events sent

via this method will be sent as regular traffic packets and delivered via the underly-

ing network’s routing algorithms, and so inherit the properties of those algorithms.

Switch ids are typically not IP addresses; rather, they use a precomputed mapping

from integers to switches that must be supplied to the Lucid compiler.

The second generation type allows users to send events out of multiple ports

by utilizing the switch’s multicast engine. Doing so requires the user to provide a

multicast group, which is simply a set of ports. Multicast groups have type group,

and can be defined in two ways:

1. The expression {0, 3, 7} specifies a group containing ports 0, 3, and 7. The

entries of the group must be integer constants.

2. The expression flood x specifies a multicast group containing all ports except

x. Unlike the prior syntax, x may be computed dynamically.

The flood syntax provides support for the common use-case of broadcasting a

message to all ports but one (typically the port the message originally came from).

The reason the first syntax requires all entries to be constant is because the switch’s

multicast engine must be configured ahead of time, so we must be able to statically

determine all possible multicast groups in the program during compilation. We sup-

55

port dynamic computation of flood by predefining groups for every possible value of

flood x, thus ensuring that the appropriate group always exists.

In either case, events may be generated with the statement generate_ports

(grp, event), which will result in event being sent out of all ports in grp.

3.2.5 Sizes

Memory is at a premium on PISA architectures, both for local variables and globals.

Accordingly, dataplane programmers frequently wish to ensure their data takes up

exactly the necessary amount of space and no more. Lucid enables this through the

use of sizes, which are positive, compile-time integer values that represent bitwidths

and vector lengths.

Sizes may be passed as parameters to certain types. The built-in types that accept

sizes are listed below. User-defined types may also take size parameters, which can

be passed through to any component types with a size parameter.

• Integers: int<sz> is the type of sz-bit integers. The type int is syntactic sugar

for int<32>.

• Arrays: Array.t<sz> and PairArray.t<sz> are the types of (pair) arrays

whose elements have type int<sz>. The length of the array is not part of

the type. Pair arrays are discussed in §3.2.6.

• Vectors: ty[sz] is the type of vectors of length sz, whose elements have type

ty.

In addition to constant sizes, users may declare size variables at top level, as

follows:

1 size sz1 = 16;

2 extern size sz2; // Value must be supplied at compile time

3 size sz3 = sz1 + sz2;

56

In practice, we have found that size variables are typically used to denote size

values that are either conceptually distinct, or represent parameters of the program

that might vary be tweaked during later compilations. Accordingly, Lucid assumes

that size variables are meant to be distinct, and therefore always treats a size variable

as different from every other size, even if they “obviously” have the same value. Using

the above example, the types int<16> and int<sz1> would be considered different

types.

Sizes are not interchangeable with regular integers; the positions where sizes and

integers may appear are disjoint. It is possible to cast a size to an int using the builtin

size_to_int operator. Casting the other direction is impossible, since integers are

runtime values and sizes must be determined at compile time. Besides casting, the

only operator that may be used on sizes is adding two sizes together.

3.2.6 Advanced Array Accesses

Lucid’s ordering restriction on global variable accesses means that a program cannot,

in a single pass through the pipeline, read from an array, perform several computa-

tions, and write back to the same array. If a program must employ this logic, it can

utilize recirculation, generating another event that will appear at the beginning of

the pipeline. This is undesirable, because recirculation comes at a hefty performance

cost (an entire new packet to process). Fortunately, there is an alternative: if the

amount of computation is very small, the Tofino hardware provides the ability to do

all three steps (read, compute, write) in a single array access.

Lucid models this ability using a construct called a memop (Memory Operation).

Memops are a special kind of function, which are syntactically restricted to ensure

they can be performed as part of a single array access3. There are two kinds of mem-

ops, distinguished by the number of arguments they take. Basic 2-argument memops
3Specifically, memops are designed to fit in the processing capabilities of a single stateful ALU

on the Intel Tofino.

57

are simple and useful in a wide variety of situations, while the powerful 3- and 4-

argument memops are more complicated, but able to exploit the full capabilities of

the Tofino’s stateful ALUs.

Simple Memops Every memop is a function that takes two or more arguments.

The first argument(s) represent the value in the array; the remaining argument(s) are

supplied by the handler whenever the memop is used. The simplest kind of memop

takes two arguments: the value in memory and one local value. These memops have

heavily restricted syntax; their body may take one of two forms, as shown below.

1 memop just_return(int<'a> memval, int<'a> localval) {

2 return <e>;

3 }

4

5 memop conditional_return(int<'a> memval, int<'a> localval) {

6 if (<e>) { return <e>; } else { return <e>; }

7 }

More formally, a 2-argument memop’s body must be either a single return state-

ment, or a single if statement, both of whose branches are single return statements.

There are additional restrictions on the expressions <e> that appear in the memop.

Each argument to the memop can appear at most once in each expression; further-

more, the only allowed expressions are variables, constants, and the following opera-

tions: +, -, &, |, =, !=, <, >, &&, ||, !.

The entire body of the memop must typecheck normally; e.g. the condition being

tested must be a boolean. The return type of the memop is expected to be the same

as the type of its first argument (i.e. some size of integer).

Usage In addition to Array.get and Array.set, the Array library provides acces-

sor functions that incorporate simple memops. These are Array.getm, Array.setm,

and Array.update. The first two are similar to Array.get and Array.set, but apply

58

a memop before returning the value/writing the value to memory. Array.update lets

a user do both in a single action, potentially using different memops for each. As an

example, consider the following code:

1 memop incr(int<'a> memval, int<'a> localval) {

2 return memval + localval;

3 }

4

5 memop max(int<'a> memval, int<'a> localval) {

6 if(memval > localval) { return memval; } else {return localval; }

7 }

8

9 event foo(...) {

10 // Sets x to the value at index, plus localval

11 int x = Array.getm(arr1, index, incr, localval);

12 // Sets the value at index2 to the maximum of itself and localval2

13 Array.setm(arr2, index2, max, localval2);

14 // Performs both operations simultaneously using the value at idx3

15 int y = Array.update(arr3, index3, incr, localval, max, localval2);

16 }

Each function takes at least one memop, which is followed by the local variable to

be used as the second argument4. The call to Array.getm will retrieve the value at

index, add localval to it, and store the result in x. The call to Array.setm will set

the value at index2 to the larger of the current value and localval2. Finally, the

call to Array.update will perform both operations simultaneously (using the same

index). Note that each memop is applied to the original value in memory, so the

value of y depends only on incr and localval, not max or localval2.

Looking at the above example, one might notice that the usage of Array.getm

seems overcomplicated; it would be equivalent to simply use Array.get and then
4In a functional language, this would typically be handled by partial application. Since Lucid is

not functional, we pass the second memop argument to the Array function instead.

59

add localval to the result afterwards. However, on the Tofino, retrieving x and then

incrementing it takes two stages of the pipeline, since the add must to take place

after the read. In contrast, the computation performed during a memop is done in

the same stage as the read. Judicious use of memops can be crucial to convincing a

program to fit within the limited resources of a switch5.

Pair Arrays and 4-Argument Memops While 2-argument memops are simple

and suffice for most purposes, they are not quite capable of fully exploiting the capa-

bilities of the stateful ALU; that is, there are some workable applications that they

cannot express without recirculation6. For those, Lucid provides a more powerful

form of memop that expresses the entire computation, both reading and writing, in

a single function.

The most general form of memop is a 4-argument memop, which is used to access

a special kind of array called a pair array, which is essentially an array with two

values per index. These are a native hardware feature that are represented in Lucid by

the type PairArray.t. Despite storing two values per index, Pair Array lookups are

only able to return a single value, and can can only be accessed by using a 4-argument

memop.

Like simple memops, 4-argument memops have harsh syntactic restrictions on

their body. A 4-argument memop must have the form shown in Figure 3.9, except

that certain parts may be omitted as noted.

The first two arguments are the two values stored in the PairArray; the latter

two arguments are local variables supplied at the time of access. Every 4-argument

memop contains two built-in variables cell1 and cell2; unlike the other variables,
5One could imagine a compiler pass that automatically performs this transformation; such a pass

is not currently present in the Lucid compiler, but could be added in the future.
6For example, a cache that needs to maintain both cached values and the timestamp when they

were inserted. Inserting new entires requires checking the timestamp, possibly replacing the cached
value, and then updating the timestamp only if the value was replaced. Without complex memops,
the timestamp must be accessed at two separate points (before and after replacing the value).

60

1 memop foo(int<'a> memval1, int<'a> memval2,
2 int<'a> localval1, int<'a> localval2) {
3 bool b1 = <e>; // May be omitted
4 bool b2 = <e>; // May be omitted
5

6 // May be omitted entirely, or just the else branch may be omitted
7 if (<cond>) { cell1 = <e> } else
8 { if (<cond>) { cell1 = <e> } }
9

10 // May be omitted entirely, or just the else branch may be omitted
11 if (<cond>) { cell2 = <e> } else
12 { if (<cond>) { cell2 = <e> } }
13

14 // No else branch is permitted. May be omitted, in which case a default
15 // return value will be used (provided as an additional argument to the
16 // PairArray.update function that calls the memop).
17 if (<cond>) { return <return_exp> }
18 }

Figure 3.9: The form of a 4-argument memop.

these names are hardcoded and cannot be changed by the user. Semantically, these

represent the two cells of the array, and are initialized to memval1 and memval2,

respectively. At the end of the memop, the value assigned to cell1 will be stored in

the first cell of the array, and similarly for cell2. The return value of the memop

will be returned to the handler.

The types of expressions are more distinct in 4-argument memops as well. As

before, no argument may appear in any expression more than once; furthermore each

expression may use at most one of the memvals, and at most one of the localvals.

Beyond that, the different types of expressions have the following restrictions:

• <e>: Same as in 2-argument memops.

• <cond>: Must be a boolean combination of b1 and b2.

• <return_exp>Must be one of the variables cell1, cell2, memval1, or memval2.

This is the only place where cell1 and cell2 may appear in an expression.

4-argument memops are used by calling the PairArray.update function, which

has the following signature:

61

1 PairArray.update(arr, idx, op, arg1, arg2, default)

The function takes a 4-argument memop op and applies it to the values stored in

the array at idx, using arg1 and arg2 as the local value arguments, and returning

default if the memop does not execute a return statement.

3-Argument Memops The final kind of memop is almost identical to the 4-

argument version, but slightly modified for use on regular arrays that only have

one value per index. The only syntactic difference is that they lack the memval2 ar-

gument. Since regular arrays have only one entry per index, only the value of cell1

is written back to memory when the memop finishes. The cell2 variable may be

still be used in the return statement at the end of the memop; otherwise, its value is

ignored.

Completeness By comparison with the existing documentation for the Tofino, we

believe that 3- and 4-argument memops fully capture the capabilities of the Tofino’s

stateful ALUs in arithmetic mode. They can express any operation that can be

performed in the process of a single register lookup.

3.2.7 Matches and Tables

In addition to if statements, Lucid supports a more sophisticated control-flow con-

struct in the form of match statements. Unlike ifs, matches can have more than two

branches, and can test several conditions at once.

A match statement compares one or more integer expressions against an ordered

list of rules, each of which has a corresponding list of patterns and a block of code

called its body. The match statement compares the expressions to each of the rules

in order, and executes the body of the first rule whose patterns match. The syntax

for match statements is borrowed from OCaml:

62

1 match (exp1, exp2, ...) with

2 | pat1, pat2, ... -> { <code> }

3 | pat1', pat2', ... -> { <code> }

4 | ...

The expressions (exp1, exp2, etc) are permitted to be any integer expressions.

Each pattern may be one of the following:

• The wildcard pattern _, which always matches.

• An integer value, which matches if the corresponding expression has that value.

• An integer variable, which matches if the corresponding expression has the same

value as the variable.

• A bitstring, in which some or all of the bits may be replaced by an asterisk,

e.g. 0b1**1. A bitstring matches if all the non-asterisk bits match, so 0b1**1

matches all 4-bit integers that begin and end with a 1.

Branches are compared in top-down order, so if multiple branches match, the

highest one will be executed. If no branches match, the match executes no code. A

user can always prevent this by inserting a “default” branch at the end consisting of

only wildcard patterns.

Non-default patterns that involve wildcards (either the wildcard pattern or a

bitstring with wildcards) are called ternary patterns. Having any ternary patterns

makes a match statement significantly more expensive when compiled to the Tofino7,

and so should be avoided when possible.

Lucid Tables Match statements are a direct representation of PISA match-action

tables, which have identical semantics (match against an ordered list of rules, execute

the body of the first one that matches). However, they only fully capture one kind
7It means the statement must be compiled to a ternary match-action table rather than an exact

one, and hence must be stored in the more expensive TCAM memory.

63

of table: static tables, whose rules never change during execution. PISA switches,

including the Tofino, also support the more powerful dynamic tables, whose rules

can be modified at runtime.

Dynamic tables are a key part of network programming, and are often used to

represent changing network conditions (e.g. how to route packets, which ports are

open in a firewall, etc.). The drawback is that updating these rules must be done

through the control plane; there is no mechanism for adding or removing a rule

from inside the switch’s pipeline. This also means that updating rules is a very slow

process, since the control plane is orders of magnitude slower than the dataplane.

Still, dynamic tables are an irreplaceable part of certain networking algorithms.

Lucid provides a representation of dynamic tables in the form of Lucid Tables

(note: to distinguish between Lucid’s representation and the actual match-action

tables, we will always use the full term Lucid Table to refer to the former. Like a

match statement, a Lucid Table contains several rules, and can be called during a

handler to match those rules and execute some code. Unlike a match statement, the

rules are not contained in the program body, but are inserted by the control plane

while the program is running. Furthermore, the body of each rule is not arbitrary

code, but rather a restricted function called an action.

Actions Actions are similar to memops in that they are specialized, syntactically

restricted functions; however, they differ in their purpose and restrictions. Figure

3.10 shows the form of two simple actions that could be used to implement a lookup

table.

Unlike other functions, actions have two sets of parameters. The first set is passed

when the action is installed in the table as part of a rule; the second set is passed

when the action executes (after its rule matches). The body of an action must be a

single return statement matching its return type (either an integer or a record).

64

1 // Result of a table lookup.
2 // Invariant: if hit is false, then val is a dummy value
3 type result = {
4 bool hit;
5 int val;
6 }
7

8 // Failed lookup, return a default value
9 // that is determined when the action is called.

10 action result miss_acn()(int default) {
11 return { hit = false; val = default };
12 }
13

14 // Successful lookup, return a real value (v)
15 // that is determined when the action is created.
16 action result hit_acn(int v)(int default) {
17 return { hit = true; val = v };
18 }

Figure 3.10: Actions to be used in a dynamic lookup table

1 table_type lookup_table = {
2 key_size: (32, 8) // Match on a pair of 32-bit and 8-bit expressions.
3 arg_types: (int) // Match-time argument type(s) for this table's actions
4 ret_type: result // Return type of this table's actions
5 }
6

7 global lookup_table tbl = table_create<lookup_table>((hit_acn, miss_acn),
8 1024,
9 miss_acn());

Figure 3.11: Declaring a table, using the actions defined in Figure 3.10.

In the case of Figure 3.10, the return type of an action indicates whether the

lookup was successful or not (hit) and if so, what value was retrieved. If the lookup

failed, a default value, provided at match time, is returned instead.

Declaring Lucid Tables Figure 3.11 shows how to create a Lucid Table. The

table’s type must be declared beforehand; this type consists of (1) the type of the

keys that the rules will match against, (2) the match-time parameter type(s) to the

table’s actions, and (3) the return type of the table’s actions.

Like arrays, Lucid Tables are located in a particular stage of the pipeline. This

means they are subject to the ordering restriction, and hence are declared using the

65

global keyword. When a table is created, it takes three arguments:

1. The list of possible actions that will be entered into the table. Each of these

actions must have the appropriate return type and match-time argument type.

This information is required when configuring the table in P48.

2. The maximum number of entries in the table.

3. A default action to be performed if no rule matches. Note that since the action is

being installed in the table, its install-time arguments (if any) must be supplied.

Accessing Lucid Tables Finally, Figure 3.12 shows how Lucid Tables can be used

in a handler. To perform a lookup, one calls the inbuilt table_match command,

which takes as arguments the table to match on, the keys to match against, and

any match-time arguments to that table’s actions. It then performs the match, and

returns the result of the executed action.

In Figure 3.12, the handler then proceeds to either print the result, if the lookup

was a hit, or insert a new value into the table. It does so using the table_install

command to add a new rule. Since installing a rule can only be done by the control

plane, the table_install rule is asynchronous: rather than modifying the table di-

rectly, it sends a message to the control plane requesting a particular rule be installed.

As a result, table_install does not count as a global access for the purposes of the

global ordering.

The syntax for a rule is shown on line 13; it consists of a pattern (in this case,

the two keys k1 and k2), followed by the action to be executed when that pattern is

matched. Again, we must supply the install-time argument(s) to this action at this

point.
8One might wonder if we could determine the set of possible actions via static analysis, by

examining every install command. Unfortunately, it may be the case that the control plane wishes
to install rules that are never installed from the Lucid program. The best we can do is to ensure
that all rules that are installed by the Lucid program use appropriate actions.

66

1 event lookup(int<32> k1, int<8> k2, int v) {
2 int default = 0;
3 // Global access: consumes the table
4 result tbl_result = table_match(tbl, (k1, k2), (default));
5

6 if(tbl_result#hit) {
7 printf("Lookup successful, value %d", tbl_result#val);
8 } else {
9 printf("Lookup failed, inserting value %d", v);

10

11 // Asynchronous operation: does NOT consume the table
12 table_install(tbl,
13 { (k1, k2) -> hit_acn(v); }
14);
15 }
16 }

Figure 3.12: An event that performs a lookup in tbl, and either prints the result or
adds a new entry for the current keys.

Patterns Like match statements, Lucid Tables support both exact matches (as in

Figure 3.12) and ternary matches. Ternary patterns are entered into the table by

means of a bitmask. The syntax for doing so is as follows:

1 int<8> mask = 0b11111000;

2 table_install(tbl,

3 { (k1, k2 &&& mask) -> hit_acn(v); }

4);

In the example above, the bitmask specifies that pattern will perform an exact

match against k1, but will only match on the first 5 bits of k2 (whose corresponding

mask bits are 1s). The remaining bits of k2 will be treated as wildcards (because

their mask bits are 0s).

Priorities Also like match statements, Lucid Tables match their rules in a partic-

ular order, determined by each rule’s priority. Priorities are integer values, with

lower values being matched against first. By default, rules are entered into a ta-

ble with a priority of 10; however, users can specify a different priority as follows:

67

1 table_install(tbl,

2 // Install the rule with a priority value of 9

3 { [9] (k1, k2) -> hit_acn(v); }

4);

The above program installs the rule with a priority of 9, meaning it will be matched

before any rules with the default priority of 10. If multiple rules have the same priority,

they are matched in insertion order (i.e., new rules are matched last).

3.2.8 More on Types

By this point we have seen all the major types in Lucid. This section covered related

topics that have not come up, or have not been covered in detail.

User-defined types As demonstrated briefly in the previous section, users can

declare their own types, using the syntax

1 type foo<'sz1, 'sz2, ...> = ...;

where 'sz1, 'sz2, ... are polymorphic size parameters that may be used in the

body.

Notably, record types must be defined this way before they are used. Further-

more, the labels in a record type must be unique; this allows type inference to easily

determine the type of a record from a single label.

Polymorphism Beyond type definitions, Lucid allows functions to be polymorphic

in the type and sizes of their input arguments. Like before, polymorphic arguments

are denoted by a name preceded by a tick. For example, the following function accepts

any type for its first argument, and any size integer for its second:

1 fun void foo('a arg1, int<'b> arg2) { ... }

68

Global types A global type is one that represents persistent, mutable memory.

This means each instance of a global type is located in a particular pipeline stage, and

hence are part of the global order and must obey the ordering restriction (described in

§3.1.3). Instances of global types must always be declared using a global declaration.

Formally, global types are defined by the following rules:

1. The types Array.t and PairArray.t are global.

2. All table_types are global.

3. Compound types (records, vectors) are global if any of their components are

global.

Constraints Functions that take global-typed arguments additionally carry con-

straints that describe what the relative order of those arguments must be; this is to

ensure that global accesses within the function do not violate the ordering restriction.

Constraints are specified following the arguments of the function, as below:

1 fun void foo(Array.t<16> arr1, Array.t<32> arr2, Array.t<1> arr3)

2 [start < arr1, arr1 < arr2 < arr3, end arr3]

This function has three constraints. The first specifies that the function must start

(i.e. be called) before arr1 has been used. The second specifies that arr1, arr2,

and arr3 must have been declared in that order, and the third specifies that when the

function is done executing, arr3 will have been accessed, and so cannot be accessed

later (and neither can arr1 and arr2, since they were declared before it).

In practice, we are always able to infer these constraints from the function body, so

the user need not write them explicitly. They may still do so as a reminder, however,

or if they wish to add artificial constraints on the function’s usage. The one exception

is that functions that appear in the interface of a module must be annotated with

their constraints, since the interface does not provide the body of the function.

69

Events that involve global arguments also require constraints, and unlike functions

these constraints cannot be inferred and must be supplied by the programmer. Since

their starting and ending locations are fixed9, event constraints only use the form a

< b. Explicit annotations are required because every event can generate every other

event, so events are essentially all mutually recursive; this severely complicates con-

straint inference. Fortunately, events that use global arguments are rare in practice,

so this is not especially burdensome to the programmer.

3.2.9 Interface files

Lucid programs need not operate on their own. Indeed, they are capable of interop-

erating both with the control plane and with other Lucid programs, provided that all

sides of the operation agree on the same interface. Lucid enables this agreement in

two ways.

Interoperation with other Lucid programs is provided through header files, which

declare certain events that should be common to both programs (although they may

have different implementations). Programs can then include those files to ensure they

have compatible interfaces.

Interoperation with the control plane is enabled via the use of interface files,

which are generated by the Lucid compiler. There are two types of interface files:

event files contain information about the events that are declared in the Lucid

program, while global files allow the control plane to map the names of global

values in the source program to their realization on the hardware.

Header files Header files in Lucid are used in the same way as languages like C++:

by convention, they contain declarations but not definitions. The most important

declarations in a header file are those of events, since events are how different switches
9The beginning and end of the pipeline, respectively.

70

communicate.

When events are compiled to the hardware, their names are replaced with integer

identifiers that are used to distinguish packets of different event types. Since Lucid

cannot guarantee that the compiler will choose the same identifier for two events in

different programs (even if they have the same declaration), we allow users to select

the identifier when an event is declared, as shown below:

1 event foo@1(int x);

2 event bar@2(int<16> y, int<8> z);

The above program defines two events named foo and bar, whose assigned iden-

tifiers are 1 and 2, respectively. Any program that includes these lines must assign

those identifiers to the respective events, ensuring compatibility across programs.

Event files An event file is a Python program that has two parts: first, it contains

a list of all the events that are declared in the Lucid program, including their name,

arguments, and integer identifiers. Second, it contains Python functions for parsing

and deparsing events from/to bytestreams. This file is automatically generated by

the Lucid compiler, and can be used as the basis of a control plane program as it

handles the sending and recieving of events.

Global files A global file is a JSON file that contains, for every global declared in

the source program, the name of the hardware entity it corresponds to. This allows

the control plane to know, for example, precisely how it should insert a rule into a

given table, or which memory cell it should poll to obtain a count. Global files are

also generated automatically, and are always needed when Lucid Tables are used.

71

3.2.10 Parsers

When an event arrives at a switch, it does so as a packet, in the form of an un-

structured series of bits. These bits must be parsed to determine which event they

correspond to, and what its arguments are. Conversely, when an event is generated,

it must be deparsed (or “serialized”) into a packet for transmission. For background

events, Lucid generates an appropriate P4 parser and/or deparser automatically.

However, parsing packet events (which correspond to traffic packets) requires knowl-

edge about both the format of packets in the network, as well as the user’s high-level

intentions for what each packet event should represent.

Lucid allows users to express this information in the form of parsers. Parsers are

special blocks of code that are capable of reading bits from a packet, matching on the

result, and ultimately generating an event.

1 packet event
2 eth(int<48> dst, int<48> src, int<16> etherty, Payload.t payload);
3

4 parser parse_eth() {
5 read int<48> d;
6 read int<48> s;
7 read int<16> ety;
8 generate eth(d, s, ety, Payload.parse())
9 }

Figure 3.13: A very basic parser that parses the first three elements of an ethernet
header

A simple parser is shown in Figure 3.13. When this parser is called on an arriving

packet, it will read the first 48 bits into the local variable d, the next 48 bits into s,

and the next 16 bits into ety. It will then use that data to create an eth event to

be handled by the Lucid program, whose arguments are the parsed data, and whose

payload is the rest of the packet (denoted by the call to Payload.parse).

A more sophisticated parsing setup is shown in Figure 3.14. It begins by defining

record types for the two header types it cares about: ethernet and IPv4, as well as two

events: one for a generic ethernet packet, and one for an IPv4 packet encapsulated

72

1 const int IPV4_ETY = 0x0800
2 const int IPV6_ETY = 0x86DD
3

4 type eth_hdr = {dst : int<48>; src : int<48>; etherty : int<16>; }
5 type ipv4_hdr = { ... }
6

7 packet event eth (eth_hdr e, Payload.t payload);
8 packet event eth_ip(eth_hdr e, ipv4_hdr ip, Payload.t payload);
9

10 parser parse_ip(eth_hdr e) {
11 read ipv4_hdr ip;
12 generate eth_ip(e, ip, Payload.parse());
13 }
14

15 parser main() {
16 read eth_hdr e;
17 match e#etherty with
18 | LUCID_ETHERTY -> { do_lucid_parsing(e); }
19 | IPV4_ETHERTY -> { parse_ip(e); }
20 | IPV6_ETHERTY -> { drop; }
21 | _ -> { generate eth(e, Payload.parse()); }
22 }

Figure 3.14: A pair of more sophisticated parsers that parse IPv4 packets separately
from other ethernet packets, and drop IPv6 packets.

in an ethernet packet. It then defines two separate (but related) parsers: one for

parsing an ethernet packet from scratch (main) and one for parsing an encapsulated

IPv4 packet (parse_ip). Lucid programs always begin parsing a new packet by

calling the parser named main.

In this case the main parser begins by reading the ethernet header from the

packet10. Reading a compound type in a parser is done by simply reading each

of its components in declaration order. It then matches on the ethertype field of the

just-parsed header to determine what action to take next.

If the ethertype contains the special value indicating that this is a packet generated

by Lucid (i.e. a background event), then we transfer control to Lucid’s automatically

generated parser by called the built-in parser do_lucid_parsing. Otherwise, if this

is an IPv4 packet, we continue parsing by calling the parse_ip parser. If this is an
10This parser encodes an assumption that all packets in the network are ethernet packets. An

assumption of this form is always necessary to begin parsing at all. Packets violating the assumption
are unexpected traffic in the network, and will produce unexpected behavior.

73

IPv6 packet, we drop it, and for any other type of packet we generate an eth event

and finish parsing.

In the case of an IPv4 packet, the parse_ip parser reads the IPv4 header and

generates an eth_ip event using both it and the previously parsed ethernet header.

Instead of defining a separate parser for IPv4 packets, we could also have inlined the

body of parse_ip into the IPV4_ETHERTY branch of main. Indeed, parsers can be

nested arbitrarily deep in this way. However, defining separate parsers can be useful

for modularity and code reuse (e.g. parse_ip could be called from different parsers,

or different branches of the same parser).

Checksums Some header types, such as IPv4, include checksums to protect against

data corruption during transit. Accordingly, Lucid provides a way of computing

checksums during parsing, as shown below:

1 read ip_t ip;

2 int<16> new_csum = hash<16>(checksum, ip#v_ihl, ip#tos, ip#len, ip#id,

3 ip#flags, ip#ttl, ip#proto, ip#src, ip#dst);

This hash function uses the built-in checksum seed to indicate that it should

use the hardware’s underlying checksum computation. The output is a hash of the

provided fields, which can be used to update a checksum when a field is changed, or

compared against the previous checksum to ensure that the packet is uncorrupted.

Automatically generated parsers Often, a Lucid program will only have one

packet event, and the arguments to that event correspond directly to the header

fields of the packet. This was the case for our very first example program (Figure

3.1), which had the same event declaration as Figure 3.13. One might notice that our

argument to the eth event precisely describe the format of an ethernet header11: 48
11Although there may be variations depending on which version of the ethernet specification is

used.

74

bits for the destination address, followed by 48 bits for the source address, then 16

bits for the ethertype, and then the rest of the packet (the payload).

When this happens (exactly one packet event whose arguments correspond di-

rectly to the packet format), it is possible to generate a parser automatically that

simply associates all (non-Lucid-generated) packets with that event, and reads their

arguments directly from the headers, in order. This is exactly the behavior of the

parser defined in Figure 3.13. As a convenience, Lucid does precisely this whenever a

program with one packet event does not define a main parser. For such programs, all

parsers may be automatically generated, and users need not write their own at all.

Deparsers The deparser for Lucid events serializes them back into a series of bytes.

Deparsers simply emit the packet headers as a stream of bytes in order; for background

events, the header values are preceded by an ethernet header with a special Lucid

ethertype. For background events, deparsers are always the inverse of parsers; how-

ever, since user-generated parsers may have arbitrary behavior, the deparser for a

packet event may not be its inverse.

Comparison to P4 parsers Parsers in P4 [59] are represented as state machines,

with a designated start state and two implicit accept and reject states. Each state

may perform several operations such as reading from the packet or skipping forward,

and ends with a transition statement indicating the next state.

There are two kinds of transition statements. Unconditional transitions simply

specify the next state. Otherwise, the select keyword is used to match on one or

more provided header fields to determine the next state. The semantics of select

are the same as those of a match statement.

When designing the Lucid parser syntax, the primary goal was something simple

and easy-to-use. As a result, Lucid parsers represent a subset of the capabilities of P4

parsers. The most notable distinctions are that P4 parsers may contain loops, while

75

Lucid parsers may not. Furthermore, P4 parsers may allow dynamically changing

the patterns in their select statements, while Lucid parsers match against static

patterns.

In practice, we have not found these to be significant limitation. PISA parsers

do not support loops, so any parser loops in P4 would have to be unrolled anyway.

Furthermore, dynamic patterns are needed for only a handful of protocols (such as

MPLS), and so disallowing them does not severely hurt usability.

Header Slots Much like the global ordering, Lucid parsers must satisfy certain

restrictions to ensure they can be compiled to hardware. When a Lucid program is

compiled to P4, each local variable and event argument is stored in the header fields

of the packet being processed. In particular, each argument is stored in a specific

“slot”12 in the packet’s headers. During parsing, we need to ensure that when we

read bits from the packet, they are stored in the appropriate slot, so they can be

accessed while handing the event13.

This means that we must determine which slot every read statement targets,

which we can do easily via a static analysis. For example, in Figure 3.14, e should

be read into the slot of eth’s first argument (which is also the slot of eth_ip’s first

argument), while ip should be read into the slot of eth_ip’s second argument.

However, problems may arise if two variables or arguments need to share a slot.

For example, consider Figure 3.15a. Variables e1 and e2 are both used as the first

argument to foo at different points. This means they must both be read into the

same slot, which is impossible, since they are both alive at the same time. The parser

is therefore not implementable (as written) in P4, although in this case the issue could

be solved by moving the reads for e1 and e2 into their respective branches, assuming

they are not needed for the match.
12Analogous to a register.
13It would also be possible to move them into the appropriate slot after parsing, in the pipeline

itself, but doing so would take potentially many pipeline stages.

76

1 read eth e1;
2 read eth e2;
3 match ... with
4 | 0 -> { generate foo(e1); }
5 | 1 -> { generate foo(e2); }

(a)

1 read eth e1;
2 match ... with
3 | 0 -> { generate bar(e1, ...); }
4 | 1 -> { generate bar(..., e1); }

(b)
1 match ... with
2 | 0 -> {
3 read eth e1;
4 match ... with
5 | 1 -> { generate foo(e1); }
6 | 2 -> { generate bar(e1, ...); }
7 }
8 | 3 -> {
9 read eth e2;

10 match ... with
11 | 4 -> { generate foo(e2); }
12 | 5 -> { generate bar(..., e2); }
13 }

(c)
Figure 3.15: Ways in which a parser could go wrong: (a) Two variables need to

share the same slot at the same time, or (b)/(c) Two parameters to the same event
need to share a slot.

The other problem that can occur is unifying different slots of the same event,

as in Figure 3.15b. In this case, the same variable (e1) is used as both the first and

last argument to bar, so those parameters must share a slot. Like before, this is

impossible, since the parameters are alive at the same time. Problems of this type

can even occur transitively. In Figure 3.15c, we experience the same issue, but more

drawn out: lines 5 and 6 imply that the first parameters of foo and bar must share a

slot, while lines 11 and 12 imply that the last parameter of bar must share the same

slot14.

Detecting slot overlaps Fortunately, Lucid is able to detect these sorts of errors

and provide users with useful feedback when they occur. It does so using a unification-

based analysis, much like the type system described in §4, inspired by algorithm J [53].
14In the future, we may be able to avoid this particular issue by using the P4 lookahead function

to read e1 multiple times into different slots.

77

We assign a fresh “slot variable” to each event parameter, parser parameter, and local

parser variable. When a variable is used as an argument to an event or parser, we

unify that variable’s slot with the slot of the corresponding parameter. For example,

in Figure 3.15b, line 3 unifies e1’s slot with the first parameter of bar, and line 4

unifies it with the last parameter of bar.

The sets of variables and parameters that have been unified together form an

equivalence class representing a single slot: every element of that class must go in the

same slot. We validate these equivalence classes by ensuring that no class contains:

• Two parser variables that are alive at the same time

• A variable and a parameter from the same parser, or

• Two parameters of the same event

If any of these occur in an equivalence class, we have detected an illegal overlap,

and can report it to the user. In addition to reporting which things collided, we

can also print the equivalence class itself, to give the user full information about why

those two things were unified. This allows the user to more easily figure out what

went wrong and how to fix it.

3.3 The Lucid Interpreter

By default, Lucid provides two tools for actually executing a Lucid program. The

most obvious is the compiler: Lucid is compiled into P4, which can then be compiled

to the Tofino and executed on actual hardware. This process is covered in-depth in

Chapter 5.

However, Lucid also provides an interpreter, which can be used to simulate the

behavior of a Lucid program without compiling and running it. Anecdotally, network

programmers who used Lucid have commented on how much of an improvement this

78

is over P4 and similar languages; it is invaluable to be able to see how a program

should behave without committing to the lengthy compilation/deployment process,

or relying on the ponderous15 ASIC simulator.

3.3.1 Simulation

The Lucid interpreter is somewhat more complex than a standard language inter-

preter. Rather than running a program line-by-line, it simulates a network of switches

responding to and generating events. The topology of this network is determined by

a configuration file which is supplied when the interpreter is invoked. Each switch

runs a separate instance of the input Lucid program; in particular, note that this

means that each switch has its own copy of every global variable in the program.

The interpreter maintains a global clock counting the number of steps since it

began. By default, each step corresponds to roughly one nanosecond, but this is

configurable. Each event in the network specifies the time and place it will appear.

At each step of the interpreter, all events appearing at that time are processed in an

arbitrary order. This might result in more events being generated, which will appear

at a later time16.

The interpreter prints each event to the console as it is processed, providing a log

of execution. Additionally, users may use the builtin printf statements to print ad-

ditional information, usually for debugging purposes (printf statements are ignored

when running on actual hardware). At the end of interpretation, the interpreter also

prints the internal state of each switch, so the user can directly inspect the final

state of the network. Since termination is not guaranteed in general, users can set a

maximum global time.

Users can interact with the interpreter while it is running, allowing them to gen-
15The ASIC simulator can simultate a switch processing about one packet per second.
16The time for an event to appear after being generated is configurable, and may be randomized

to simulate network jitter.

79

erate events and receive events that were sent outside the network (e.g. a forwarded

packet). This latter capability allows the interpreter to work as a softswitch. In

particular, a user could use the interpreter to easily test Lucid programs in other

simulation environments, e.g. Mininet [48] – this could be desirable if the other

simulator has features the Lucid interpreter lacks.

The Lucid interpreter also has a non-interactive mode, where the entire trace

of input events is provided at the start. This is useful for testing the behavior of a

program on a large trace, such as actual traffic data. Indeed, Chapter 6 discusses how

we use this capability to automatically optimize Lucid programs by testing various

configurations against captured traces using the interpreter.

3.3.2 Capabilities of the Interpreter

What does the interpreter model? In additional to simply interpreting Lucid

programs, the interpreter provides a basic model of several features of real networks.

In particular, the interpreter models:

• Multi-switch topologies: The interpreter lets users simulate a program in

a setting with multiple switches that each have independent connections and

memory; both the number of switches and the topology are configurable by the

user.

• Time: One step of the interpreter corresponds to one nanosecond of actual time;

this is a good approximation of modern packet processing speeds. Furthermore,

operations such as event generation have built-in delays, both for creating the

event in the first place and for sending it across a link, if necessary. These

values are configurable by the user.

• Packet Reordering: In actual networks, packets may unpredictably arrive or

be processed in a different order than they were sent. Lucid models this by

80

adding a random delay to events when they are generated or sent across a link.

The range of delay values is configured by the user, and random delays can be

disabled by setting this range to 0. Furthermore, a user may provide a random

seed to ensure determinism.

• Packet Loss: Similarly to reordering, packets may be lost or corrupted when

transmitted across links. Lucid models this by providing a user-configurable

chance of packets being randomly dropped each time they are sent across a

link.

• The Control Plane: Lucid supports control-plane programs written in Python

which can send and receive events, as well as arbitrarily modify switches’ mem-

ory during interpretation. If a control plane file is provided, an instance of the

Python interpreter is maintained alongside the Lucid interpreter, with pipes

between them for communication.

What doesn’t the interpreter model? There are several important features of

real networks that are not covered by the interpreter. Typically, this is because the

interpreter operates within the framework of Lucid, and the feature in question is not

represented in the language.

• Resources: Lucid’s interpreter does not model the finite resource constraints of

a real switch, since those constraints are not reflected in the surface language17.

The interpreter will happily run a program that is far too large to fit on a real

switch.

• Queuing: Events in the interpreter are stored in a single, undifferentiated

queue with no length limit. Real switches typically have multiple queues (e.g.
17It does model ordering constraints, but this model is moot since ordering errors will be caught

by the type system before interpretation.

81

to sort packets by priority), of finite length. The interpreter will never drop an

event because it did not have queue space.

• Bandwidth: Links have no limit on the number of packets that can be trans-

mitted across them in any given timeframe.

3.4 Evaluation

The Lucid project has one primary goal: make it easier to write dataplane programs.

We address this primarily through language design: we have endeavored to make the

syntax intuitive and easy to reason about, and to provide high-level abstractions over

complicated switch features, such as events to represent recirculation and handlers

instead of chains of match-action tables. In particular, we have created high-level

representations of low-level hardware restrictions, such as the global order and mem-

ops, and combined them with easy-to-understand guidelines and feedback to ensure

those restrictions are enforced.

Accordingly, to evaluate Lucid, we should ask the following two questions:

1. Expressivity. Can Lucid be used to express a wide variety of useful and prac-

tical dataplane programs, despite being a higher-level, more abstract language?

2. Usability. Is Lucid significantly easier to use than existing dataplane lan-

guages?

3.4.1 Expressivity

In our initial evaluation of Lucid, we implemented a benchmark suite of 10 dataplane

applications, listed in Figure 3.16. These applications range from simple NATs to

complicated analytic programs like *Flow [74]. We were able to express the function-

ality of each program entirely in the dataplane, and always with much less effort than

82

LoC
Application Description Lucid P4

Stateful
Firewall
(SFW)

Blocks connections not initiated by trusted hosts. Control events
update a Cuckoo hash table.

189 2267

Fast
Rerouter
(RR)

Forwards packets, identifies failures, and routes. Control events per-
form fault detection and routing.

115 899

Closed-loop
DNS Defense
(DNS)

Detects/blocks DNS reflection attack with sketches & Bloom filters.
Control events age data structures.

215 1874

*Flow [74] Batches packet tuples by flow to accelerate analytics. Control events
allocate memory.

149 1927

Consistent
Shared State
(SRO)[86]

Strongly consistent distributed arrays. Control events synchronize
writes.

94 897

Distributed
Prob. Firewall
(DFW)

Distributed Bloom filter firewall. Control events sync. updates. 66 1073

+Aging Adds control events for aging. 119 1595

Single-dest.
RIP

Routing with the classic Route Information Protocol (RIP). Control
events distribute routes.

81 764

Simple NAT Basic network address translation. Control events buffer packets
and install entries.

41 707

Historical
Prob. Queries
(CM)

Measures flows with sketches for historical queries. Control events
age and export state periodically.

93 856

Figure 3.16: Applications with data plane-integrated control, implemented in Lucid
and compiled to the Barefoot Tofino. The role of control events is bolded. Chart

adapted from the original Lucid paper [73]

it would take to write them in P4. Each of these programs successfully compiled to

the Tofino.

These examples provide a broad sample of the possible Lucid programs, but they

are far from exhaustive. Later chapters of this thesis will discuss further programs

we have written, and there have already been academic works using Lucid as a base,

notably Parasol [37] (discussed in Chapter 6) and SwitchLog [52]. Lucid is being used

by researchers outside of the Lucid developers, all of whom are creating more and

more Lucid programs. It seems that Lucid is, in fact, capable of expressing interesting

83

Application NAT RIP Dist FW Dist FW + Aging
Dev. Time 25m 40m 25m 25m + 30m

Figure 3.17: Time for a student without Tofino experience to write Tofino-compiling
Lucid applications.

dataplane programs.

3.4.2 Usability

We have several data points indicating that Lucid is easier to use than P4.

Program size As shown in Figure 3.16, Lucid programs are typically around 10x

shorter than equivalent P4 programs. This measurement comes with an important

caveat, however: with one exception, we are comparing Lucid code to the output of

the Lucid compiler, not to hand-written P4. The reason is that, simply put, these

applications are so difficult to write in P4 that we could not find any hand-written

versions to compare against. The exception is *Flow, a complex application that did

publish a P4 implementation. Fortunately, the comparison is in line with the trend:

the Lucid version of *Flow was able to implement equivalent functionality in less than

1/10th the space.

Although the rest of comparisons in Figure 3.16 are in some sense artificial, the

mere fact that we could not find handwritten implementations of these programs is

a testament to the utility of Lucid.

Programming time We timed how long it took for one of the Lucid authors, a

3rd-year PhD student with no prior dataplane or Tofino programming experience, to

implement several of the applications in Figure 3.16; the results are shown in Figure

3.17. Most applications were written in less than half an hour, with even the most

complicated one (a distributed firewall whose entries time out) taking less than an

hour.

84

1 apply {
2 if (hdr.ip.dstip == 1){
3 tmp = reg1_r.execute(0);
4 hdr.ip.dstip = reg2_rw.

execute(0);
5 } else {
6 tmp = reg2_r.execute(0);
7 hdr.ip.dstip = reg1_rw.

execute(0);
8 }
9 }

(a)

1 event packet_in(header_t hdr) {
2 if(hdr#ip#dstip == 1) {
3 int tmp = Array.get(reg1, 0);
4 Array.set(reg2, 0, tmp);
5 } else {
6 int tmp = Array.get(reg2, 0);
7 Array.set(reg1, 0, tmp);
8 }
9 }

(b)

(c)

(d)
Figure 3.18: A comparison of how the P4 and Lucid compilers respond to the same
error. The P4 code and Lucid code are shown in (a) and (b), respectively. The P4

error is shown in (c) and the Lucid error in (d).

Certainly, the fact that the test subject was a Lucid author contributes to these

short times, but as a point of comparison, the authors have generally found that it

can take new PhD students several weeks of learning P4 and the Tofino before they

can write something nontrivial. Even for an expert, this level of productivity in P4

is hard to imagine.

Error Messages Lucid provides users with guidelines for how to write correct

programs, most notably via the global order and via the abstraction of memops.

When those guidelines are violated, Lucid provides useful, actionable error messages

pointing the users to the specific parts of the program that contain errors. Figure 3.18

compares the errors given by the P4 and Lucid compilers to the same fundamental

problem (an ordering error – the two branches access reg1 and reg2 in different

85

1 RegisterAction<bit<32>,
2 bit<8>,
3 bit<32>>(reg1)
4 reg1_w = {
5 void apply(inout bit<32> remote,
6 out bit<32> ret_remote){
7 remote =
8 hdr.ip.srcip + hdr.ip.srcip

;
9 ret_remote = 0;

10 }
11 };
12

13 apply {
14 hdr.ip.srcip = reg1_w.execute(0);
15 }

(a)

1 memop double(int memval, int x)
2 {
3 return x + x;
4 }
5

6 ...
7

8 Array.setm(arr, 0, double,
9 hdr#ip#srcip);

(b)

(c)

(d)
Figure 3.19: A comparison of how the P4 and Lucid compilers respond to the same
error. The P4 code and Lucid code are shown in (a) and (b), respectively. The P4

error is shown in (c) and the Lucid error in (d).

orders).

The P4 snippet in Figure 3.18a results in the error in Figure 3.18c. Notice that

the error does not describe the root cause of the issue (it just describes the particular

problem that halted the compiler), nor does it indicate which part of the program

is responsible. In contrast, the Lucid snippet in Figure 3.18b results in the error in

Figure 3.18d, which both identifies the type of error (an ordering error) and points

to the specific line of code where the error was detected.

Figure 3.19 performs the same comparison for memops. Figures 3.19a and 3.19b

show the same program in P4 and Lucid, respectively. The P4 code results in the error

in Figure 3.19c, while the Lucid code outputs the error in Figure 3.19d. Notice that

86

the P4 error references things (phvs, add operands) that do not appear in the code

body. In contrast, the Lucid error message points to a particular line, and provides

the specific error: one is not allowed to use a memop parameter (in this case x) more

than once per expression18.

Interpreter Lucid has an interpreter, which can be used to quickly and easily test

the behavior of Lucid programs. P4 has a reference implementation, but it does

not include the Tofino’s architecture-specific externs. In practice, to ”test” a P4-

Tofino program, one must compile it to the hardware and then run it on Intel’s

proprietary software model of the Tofino. This workflow has a few problems: first, it

requires that the program actually fit into the hardware before testing it; second, if

the program does something unexpected, it may be due to a bug in either the program

or the compiler; third, both the compiler and Tofino software model are slow. Lucid’s

interpreter solves all of these problems, and indeed our work on Parasol (described in

Chatper 6) relies on the interpreter to perform its simulations.

Practical Impact Finally, several researchers at Princeton have begun to use Lucid

in their work, either instead of or in addition to P4. These users have generally

reported that Lucid is significantly easier than P4 to work with, and that they have

experienced higher productivity and less frustration as a result. At the time of writing,

Lucid has been used for at least the following projects19:

• Several undergraduate summer research projects, most notably SwitchLog [52],

a variant of Datalog that runs in the dataplane.

• Parasol [37], a dataplane optimizer described in Chapter 6.

• Tango [12], a system for cooperative, performance-aware routing.
18The full details of valid memop syntax are described in §3.2.6, and are available to users at the

Lucid GitHub repo.
19The first two projects involved the author; the remainder did not.

87

• SmartCookie [84], a SYN flooding defense system, which was prototyped in

Lucid and later manually implemented in P4 to take fewer hardware resources.

• Orbweaver [85], a framework for exploiting unused bandwitch for in-network

communication.

• A compact data structure for detecting out-of-order TCP packets [90]. An

author commented that Lucid was chosen because it was “easier to learn [than

P4]”.

3.5 Comparison to P4

3.5.1 Feature Comparison

Although Lucid and P4 are both used to write dataplane programs, the structure

of those programs is significantly different. Many Lucid features do not correspond

one-to-one with P4 features; nonetheless, it is instructive to compare the ways in

which the two languages address different hardware features.

1. Target Architecture. Lucid only supports programs that run on a Tofino

switch. P4 is more versatile, supporting programs that run on multiple kinds of

hardware through the use of architecture files that define various hardware-

specific features. In the rest of this section, we compare Lucid specifically to

the P4 language with the Tofino architecture files.

2. Architectural Model. Lucid supports programs that run in a single ingress

and egress pipeline. P4 programs can utilize multiple pipelines, either in parallel

to support additional ports, or serially to perform additional processing on each

packet.

88

3. Metadata. P4 programs require extensive definitions of packet headers and

metadata (e.g. the port on which a packet arrived or to which it is being sent),

which must be explicitly managed in every program. Lucid programs only

require the user to manage information which the program actually uses, in the

form of event arguments. Full header definitions are only needed for writing

custom parsers.

4. Overarching Control. Lucid programs are structured as a series of event

and handler definitions, whereas P4 programs are structured as a series of con-

trol blocks describing the behavior of different hardware components (e.g. the

ingress and egress pipelines). Lucid’s compiler automatically interleaves differ-

ent threads of control into a single P4 control block; in P4, this must be done

manually as the program is written.

5. Per-Packet Control. Handler bodies in Lucid are written as imperative, C-

like code. P4 control blocks may be written in the same way, but in practice

they are structured as a series of match-action table definitions, followed by

applications of those tables20.

6. Match-Action Tables. P4 provides all four types of match-action table as

language primitives, all of which must be defined separately from their uses.

Lucid only uses this pattern for dynamic tables; static tables are provided via

match statements, and generated automatically during the compilation process.

(a) Dynamic Tables. Declarations of dynamic tables are essentially the

same in both languages, but their uses differ. In Lucid, one “calls” a table,

providing the keys and action arguments at that time. In P4, one “applies”

the table, passing no information at all; the key and argument values must
20Code written this way will typically take fewer resources, and is much more likely to compile in

the first place.

89

be set up in advance via assignments to designated variables. Furthermore,

Lucid Tables return values when called, while P4 tables directly modify

variables in the scope of their control block.

7. Stateful Memory. Lucid offers the uniform abstraction of arrays to represent

the persistent memory available in PISA pipelines, and provides an ordered

type system to ensure it is used in a consistent manner. P4 programs provide

registers, which behave similarly, but may lead to compilation errors if used

in an inconsistent way.

8. Memory Accesses. Both Lucid and P4 allow their stateful memory con-

structs to be accessed by special accessor functions: memops in Lucid and

RegisterActions in P4. memops are syntactically restricted to ensure they

can be compiled to the hardware; RegisterActions are essentially arbitrary

blocks of code which may fail to compile for unexpected reasons.

9. Packet Forwarding. In Lucid, packets are emitted by generating the corre-

sponding event at a particular location in the network (e.g. specifying the port

to send the packet out of). In P4, packets are emitted by setting one of several

metadata values to indicate the appropriate network location.

10. Packet Delays. Lucid provides the ability to buffer events to be sent out at

a later time. P4 does not provide this natively; users would have to manually

manage the Tofino’s pausable packet queues (as Lucid does automatically).

11. Parsers. P4 parsers are structured as state machines that read from the packet

and then match on its data to determine the next state. Lucid parsers are rep-

resented as nested match statements, a slightly more restrictive syntax – in

particular, Lucid does not allow parser loops. This does not sacrifice complete-

ness because the hardware does not allow loops anyway; the P4 compiler will

90

try to automatically unroll any loops during compilation. The parser operations

are the same, albeit with different names (e.g. Lucid’s read is equivalent to

P4’s packet.extract).

12. Hash Units. These have essentially the same behavior in Lucid and P4, but

different interfaces. In P4, one must declare a crc object, which is passed to a

hasher object, which can finally be called with the arguments to be hashed. In

Lucid, one simply writes a single hash expression.

13. Modules. Lucid’s system of modules is not present in P4.

14. Functions. Lucid permits standard C-style functions. P4 does not contain

arbitrary user-defined functions, but does have several function-like primitives.

The closest to a function is a control block, an object that defines some

internal state that persists across packets. Each control block contains a single

method named apply, which may have input and output arguments and has

access to the variables defined in the block. The Tofino compiler imposes many

restrictions on how control blocks can be used; for example, each control block

can only be used once in each control flow path.

(a) Actions. Control blocks may also contain actions. P4 actions are a

type of open function that can be called from a control block’s apply

method or other actions. Open functions behave like standard functions

except that, if they contain free variables, they use the definition of those

variables at their call site, rather than their definition site. In contrast,

actions in Lucid are standard functions with restricted syntax, which are

called only by dynamic tables.

15. Statements and Expressions. The statements and expressions that appear

within Lucid handlers are essentially the same as those in P4 control blocks,

91

except for the addition of vectors and loops to Lucid.

3.5.2 Limitations

Lucid compiles to P4; therefore, every Lucid program can be expressed as a P4 pro-

gram. However, the reverse is not true: there are some programs that can be written

in P4 but not Lucid. Most of the differences have to do with Lucid’s assumption of a

fixed architecture (a single ingress and egress pipeline on the Intel Tofino), and could

likely be addressed by future work that expands the scope of Lucid.

Portability P4 can be used to program different kinds of switches, and even dif-

ferent hardware architectures entirely. However, programs written for one piece of

hardware frequently end up relying on hardware-specific features, and thus fail to

compile to any other targets. In order to help ensure that Lucid programs compile

successfully, we made the choice to specialize the language to the Intel Tofino. Several

of Lucid’s features (most notably memops) are targeted specifically at the capabilities

of the Tofino. In the future, we hope to extend the range of targets Lucid can be

compiled to; doing so will require work in figuring out how to add/extend restrictions

to handle the various idosyncracies of different types of networking hardware.

Exploiting the Architecture Even on the Tofino, Lucid does not fully exploit

every part of the architecture that can be programmed with P4. As mentioned earlier,

Lucid assumes programs run in a single ingress and egress pipeline, but P4 programs

can write programs that span multiple pipelines (at the cost of lower throughput).

Furthermore, Lucid does not allow any configuration of the Traffic Manager (TM)

that sits between ingress and egress pipelines. P4 programs can direct packets to

specific queues in the TM, or add annotations to help classify traffic, which cannot

be done in Lucid.

92

There are also several hardware features inside pipelines that can be used in P4

but not Lucid. Tofino stateful ALUs provide a “math mode” that can perform low-

precision floating-point operations using predefined lookup tables. The Tofino also

provides meters, a type of stateful object like arrays that are specialized for detecting

if certain packet flows are exceeding a rate threshold.

Optimality Lucid’s compiler21 is not fully optimal with respect to hardware ca-

pabilities; that is, it may use more resources than necessary when fitting a program

onto a switch. This is an unfortunate side effect of its abstraction relative to P4,

which models hardware features more directly and thus gives users more control over

resource allocation.

Relatedly, there are certain hardware features of the Tofino that are underutilized;

for example, each stage of the pipeline contains special gateway tables, which can

evaluate certain boolean conditions for “free” (i.e. without consuming a stage). Our

compiler currently uses these only to check if Lucid Tables should be executed, but

they could be used more broadly to precompute conditions without using stages.

3.6 Related Work

3.6.1 Other network programming languages

Over the past decade, researchers have developed a number of languages for net-

work programming. For example, Frenetic [30] was designed to program OpenFlow

controllers: Frenetic computations sat on a software server and generated lists of

packet-processing rules to be sent to switches. These lists of packet-processing rules

were described using their own domain-specific sublanguage. Over time, that sublan-

guage evolved and developed in work on NetCore [67], Pyretic [62], and NetKAT [7].
21For more details about the compiler, see Chapter 5.

93

Other languages, like FlowLog [56] and Maple [81] used other kinds of programming

paradigms to control these OpenFlow systems at a high level of abstraction. A key

distinction between earlier work based on OpenFlow, and later work based on P4,

is that P4 switches contain persistent, mutable and programmable state. NetKAT

(for example) is stateless and cannot describe or implement the stateful applications

developed in this paper. The pipeline compilation and safety issues described in this

paper do not arise in these more limited systems.

More recently, there have been a number of efforts to make programming P4

switches easier. For example, Domino [70], Chipmunk [32], Lyra [31], O4 [4] and

P4All [36] allow programmers to use high-level, imperative, C-like languages to de-

scribe switch computations. They then typically deploy program synthesis techniques

to allocate those computations to stages in the pipelines of one or more hardware de-

vices.

When these techniques succeed in solving the synthesis problem, they are highly

effective. However, these tools provide little or no feedback when their synthesis fails.

We view Lucid’s contributions to this space as complementary to, and synergistic

with, these other efforts – one can certainly imagine future systems that adopt Lucid’s

high-level representations of hardware restrictions (its type system, in particular), and

then use synthesis techniques with fewer possible reasons for failure. Indeed, Lucid’s

vectors and loops were inspired by related unsafe features in P4All [36]).

Abstraction strategies Most recent dataplane programming languages attempt

to raise the level of abstraction in some way in comparison to P4. Different lan-

guages use different techniques. For example, Lyra [31] offers a “one big switch”

abstraction, aimed at automatically distributing computation across several switches

in the network while allowing users to program a single logical switch. Domino [70]

and Chipmunk [32] provide a concept of packet transactions which capture the

94

logic for processing a single packet, as well as atoms that can be used to specify

the instruction set of a particular router. P4All [36] extends P4 with “flexible” data

structures, whose size is not hardcoded but can be determined as the result of an

optimization.

A final, particularly notable point of comparison to Lucid is O4 [4], which aims

to augment P4 with higher-level constructs, many of which have direct analogues

in Lucid: arrays and loops (analogous to vectors and loops, respectively), as well

as factories (very roughly analogous to modules). A key difference between O4 and

Lucid is that O4 is an extension to P4, while Lucid is its own language.

Event-based programming To our knowledge, Lucid’s adoption of events as the

primary programming model is unique among dataplane languages (although it bears

a resemblance to Domino’s packet transactions). Event-driven programming is not

new, of course, but was notably proposed for a networking setting in 2019, albeit as an

extension to P4 rather than the basis of a language [39]. We believe the event-based

model is a natural one for dataplane programming, and hope it will be adopted by

other high-level dataplane languages in the future.

3.6.2 Syntax

One of the ways Lucid attempts to make dataplane programming easy is by providing

intuitive syntax that makes programs easy to reason about. In many cases, the syntax

is borrowed from other languages.

The intial concept of Lucid was to provide a simple, imperative syntax akin to C

or C++. This can be seen in the structure of function bodies and event handlers, as

well as the syntax for polymorphic arguments.

Much of Lucid’s syntactic DNA is drawn from OCaml, including immutable values,

polymorphic type variables (beginning with a tick), modules and interfaces, match

95

statements, and the unfication-based type inference system. In general, the authors

drew heavily on OCaml both due to personal familiarity and a desire to imbue Lucid

with a similar “functional style” of programming, in order to make it easier to reason

about.

Finally, Lucid’s syntax for creating lists via comprehensions is borrowed from

Python.

3.6.3 Network Simulators

Lucid’s interpreter can be used to simulate the behavior of a single switch or a network

of switches. Traditionally, network programmers have used network simulators for

this purpose. For Tofino programmers, the two primary methods were using Intel’s

proprietary ASIC simulator, which simulates in detail the behavior of a P4 program

on the Tofino, or Mininet [48], a virtual network simulator.

In comparison to Lucid’s, the ASIC simulator provides higher fidelity by modeling

the internals of the switch processing a packet, but is up to 10,000X slower and cannot

model networks of multiple switches. In contrast, Mininet does model a whole virtual

network, which can run the actual applications a network would use. Mininet has

a higher-fidelity representation of a network than Lucid’s interpreter (e.g. it models

bandwidth). An interesting direction for future work would be integrating the two,

using Lucid to model the individual switches and Mininet to model the network

between them.

96

Chapter 4

Pipeline Types

One of the design goals of Lucid is to make things easy, and a primary enabler of

that is its type system, which is designed to not only catch ordinary type errors, but

also a class of ordering errors that can occur in switch programs. This chapter

discusses how Lucid uses its system of Pipeline Types to not only catch ordering

errors early in the compilation process, but to return useful, actionable feedback to

the programmer to help them repair their code.

4.0.1 Attribution

The contents of this chapter were designed and implemented by the author, with

advice from Dave Walker and John Sonchack. The text of this chapter is adapted

from the POPL’22 paper describing this type system [51].

4.1 Pipeline Types by Example

4.1.1 Ordering Errors

Consider the simple Lucid program in Figure 4.1. It declares two arrays, arr1

and arr2, and whenever it receives a simple event, it reads the value in arr1[0],

97

1 global Array.t<32> arr1 = ...;
2 global Array.t<32> arr2 = ...;
3

4 handle simple() {
5 int x = Array.get(arr1, 0); // Read arr1[0], store in local x
6 int y = x + x;
7 Array.set(arr2, 0, y); // Store y into arr2[0]
8 }

Figure 4.1: A simple Lucid program that copies a value from arr1 to arr2,
doubling it in the process.

Figure 4.2: What the program in Figure 4.1 looks like when compiled to a 3-stage
PISA pipeline.

doubles it, and stores the result in arr2[0].

Recall from Chapter 2 that PISA switches process packets using a pipeline of

stages, each of which performs some amount of work (its actions) and contains a

small amount of persistent, mutable memory (registers). Figure 4.2 shows a simple

3-stage pipeline implementing the program in Figure 4.1. Arrays are stored in a

stage’s registers, which are isolated: they cannot be accessed outside of the stage

that stores them. Hence actions that access an array must be located in the same

stage as that array.

The process for compiling the code in Figure 4.1 to the pipeline in Figure 4.2

is straightforward. Each statement in the simple handler is a single action, so the

dependencies between them determine the layout. The program must read arr1

before computing y, so arr1 and its read are placed into stage 1; symmetrically, arr2

and its write are placed in after computing y, in stage 3.

98

1 global Array.t<32> arr1 = ...;
2 global Array.t<32> arr2 = ...;
3

4 handle simple() {
5 int x = Array.get(arr1, 0); // Read arr1[0], store in local x
6 int y = x + x;
7 Array.set(arr2, 0, y); // Store y into arr2[0]
8 }
9

10 handle simple_reversed() {
11 int x = Array.get(arr2, 0); // Read arr2 first this time
12 int y = x + x;
13 Array.set(arr1, 0, y); // Copy y into arr1 this time
14 }

Figure 4.3: A minor extension of Figure 4.1 that adds a new handler that accesses
the arrays in the opposite order. Unfortunately, the program is now uncompilable!

Compiling Lucid programs is not always this simple. Imagine making a small

extension to Figure 4.1 by adding a new event whose handler performs the same

operation, but copies from arr2 to arr1. Such an extension is shown in Figure 4.3.

Unfortunately, attempting to compile the new program runs into a problem: the

simple handler wants to access arr1 before arr2, and hence requires arr1 to appear

earlier than arr2 in the pipeline. However, the simple_reversed handler requires

the exact opposite! We cannot place arr1 both before and after arr21; therefore, it

is impossible to compile this program such that both handlers can execute in a single

pass through the pipeline. This is called an ordering error.

One way to resolve ordering errors is to use recirculation to send one of the events

through the pipeline twice, accessing one array each time. However, doing so is

very expensive, since it takes up bandwidth that could be used for processing other

packets; furthermore, if the handler wished to access many arrays, the packet might

require multiple recirculations, deepening the expense. As a result, rather than try

to solve ordering errors automatically, Lucid instead opts to detect ordering errors,

and provide users with useful, source-level feedback when they are detected.
1It is also impossible to place them in the same stage, since there are data dependencies between

them.

99

4.1.2 Pipeline Types

To detect errors, Lucid uses a type-and-effect system named Pipeline Types, which

is designed to enforce two constraints on the global values2 in the program:

1. No global value is accessed twice in a single pass through the pipeline (since

the packet moves to the next stage after accessing it)

2. There is some order on globals such that for every pair of accesses on each

control path, the global accessed first appears earlier in the order.

To demonstrate the ideas underlying the type system, we will return to our running

example of a Bloom filter from Chapter 3. We will again build up a Bloom filter

program in several steps, each time adding more features and describing how to

typecheck them. The basic version is replicated in Figure 4.4.

As Lucid typechecks the program in Figure 4.4, it tracks not only the raw type of

each global (e.g. Array.t<1>), but also its location: an integer representing a stage in

an abstract pipeline. The abstract pipeline has an infinite number of integer-indexed

stages, each of which stores a single global variable. Globals are assigned to stages

in declaration order, so in this case a0 is stored in stage 0, while a1 is stored in

stage 1. Accordingly, we write the full type (or just “type”) of a0 as Array.t<1>@0,

and similarly a1 has type Array.t<1>@1. Thanks to Lucid’s type inference, the

programmer does not need to write the full type of globals; it suffices to write only

the raw type, as in Figure 4.4.

As Lucid checks that a series of statements or expressions is well-formed, it keeps

track of where the computation is in the abstract pipeline (the current location).

Figure 4.5 demonstrates the process. Whenever a global is successfully accessed, the

current location moves to the stage after that global, preventing it or anything before

it from being accessed again. Statements that do not involve global accesses do not
2That is, arrays and Lucid Tables.

100

1 const int m = ...;
2 // Declare two 1-bit arrays with m entries each, initialized to 0
3 global Array.t<1> a0 = Array.create(m);
4 global Array.t<1> a1 = Array.create(m);
5 const int s0 = ...; // Seed for first hash function
6 const int s1 = ...; // Seed for second hash function
7

8 // Add item to filter
9 fun void add(int item) {

10 int idx0 = hash(s0, item);
11 int idx1 = hash(s1, item);
12 Array.set(a0, idx0, 1);
13 Array.set(a1, idx1, 1);
14 }
15

16 // Return true if item in filter
17 fun bool query(int item) {
18 int idx0 = hash(s0, item);
19 int idx1 = hash(s1, item);
20 int<1> b0 = Array.get(a0, idx0);
21 int<1> b1 = Array.get(a1, idx1);
22 return (b0 == 1 and b1 == 1);
23 }

Figure 4.4: A basic Bloom filter with k = 2. Functions add and query may be
called from many different handlers.

1 global Array.t<1> a0 = Array.create(m); // Stored at location 0
2 global Array.t<1> a1 = Array.create(m); // Stored at location 1
3

4 fun void add(int item) { // Starting location: 0
5 int idx0 = hash(s0, item); // Current location : 0
6 int idx1 = hash(s1, item); // Current location : 0
7 Array.set(a0, idx0, 1); // Current location : 1
8 Array.set(a1, idx1, 1); // Current location : 2
9 }

Figure 4.5: A demonstration of the basic typechecking strategy employed by Lucid.
All events start at location 0, and in this case the function add does as well; we
describe how function starting locations are determined in the next section.

101

1 global Array.t<1> a0 = Array.create(m); // Stored at location 0
2 global Array.t<1> a1 = Array.create(m); // Stored at location 1
3

4 fun void add(int item) { // Starting location: 0
5 int idx0 = hash(s0, item); // Current location : 0
6 int idx1 = hash(s1, item); // Current location : 0
7 Array.set(a1, idx0, 1); // Current location : 2
8 Array.set(a0, idx1, 1); // Error! 0 < 2!
9 }

Figure 4.6: A demonstration of how Pipeline Types detect ordering errors.

advance the current location; this is because our abstract pipeline only models stages

that contain global values.

Globals can only be accessed if the computation is at or before their stage of the

pipeline; if a program tries to access a global after moving past it in the pipeline,

typechecking fails. The program in Figure 4.5 typechecks, but supposed the pro-

grammer accidentally permuted the array accesses, producing the function shown in

Figure 4.6. In this case, Lucid would generate an ordering violation at line 8, since

that line accesses a0, at location 0, when that location has already been bypassed in

the pipeline (at line 7). Given the offending line, the programmer can then simply

look backwards from there, notice that they had already accessed a1 on line 7, and

determine a solution. In this case, simply swapping the offending lines would suffice.

Aside: an alternate design choice Lucid demands that all program components

access stateful data in the order it is declared. If all components consistently used

state in some other order, our system would throw an error even though the program

could be compiled. An alternate design could allow programmers to use data in

any order, provided they do so consistently across their whole program, or provided

the system can permute accesses without changing program semantics to arrive at a

consistent order (as was the case in the prior paragraph’s example).

This other design is easily achievable and, from a technical perspective, varies

little from the one above (we would simply find a satisfying assignment to ordering

102

Figure 4.7: An ordering error detected by the Lucid compiler, pointing to the exact
line of the program that conflicts with the global variable declaration order.

constraints rather than check that such constraints are consistent with an a priori

ordering). However, we chose to require that programmers follow declaration order

for two reasons: (1) declaration order provides useful, built-in documentation and

(2) it is easier to provide targeted error messages when things go wrong. Although

programmers cannot entirely avoid thinking about state ordering, Lucid boils the

requirements down to a simple, easy-to-state guideline: “Use globals in the order

they are declared”. When programmers violate this guideline, Lucid can issue a

simple message of the form “Line X conflicts with the global order,” (shown in Figure

4.7) which allows programmers to navigate right to the source of their problem and

fix it quickly.

It is also worth noting that the Lucid compiler is free to ignore the declaration

order of globals, and store globals in any order it wants, so long as that order is

consistent. The purpose of the type system is not to determine the actual order used

during compilation, but to ensure that some valid order exists.

4.1.3 Polymorphism and Constraints

As in Chapter 3, the Bloom filter code in Figure 4.4 is not reusable: the add and

query functions operate over particular arrays (a0 and a1), whose locations in the

pipeline are fixed. In the previous chapter, we saw that we could fix this by allowing

the functions to take the arrays as parameters, resulting in code like the following:

103

1 fun void add(Array.t<1> a0, Array.t<1> a1, int s0, int s1, int item)

2 {

3 int idx0 = hash(s0, item);

4 int idx1 = hash(s1, item);

5 Array.set(a0, idx0, 1);

6 Array.set(a1, idx1, 1);

7 }

However, one cannot guarantee that the code above is safe. Indeed, the function

is only safe when the location of a0 precedes the location of a1.

To facilitate proofs of safety, we extend our function definitions to admit location

polymorphism and ordering constraints. Below, we rewrite our function with

appropriate constraints, using the special keyword start to denote the location at

which the function begins execution. Within the constraint clause below, we write

a0 < a1 to mean that ℓa0 < ℓa1, where ℓa0 and ℓa1 are the locations associated with

a0 and a1. The special end constraint indicates that the function ends immediately

after the designated location.

1 fun void add(Array.t<1> a0, Array.t<1> a1, int s0, int s1, int item)

2 [start <= a0 < a1; end a1]

3 {

4 int idx0 = hash(s0, item);

5 int idx1 = hash(s1, item);

6 Array.set(a0, idx0, 1);

7 Array.set(a1, idx1, 1);

8 }

With this change, the typechecker must now ensure that the constraints are met

every time the function is called. Doing so requires reasoning about symbolic integer

locations and inequality constraints; to do so, we employ the Z3 SMT solver. We

describe our SMT encoding in detail in §4.4.3.

104

Function Types

The Pipeline Type system tracks the location information of a function in that func-

tion’s type. Function types contain 5 components: input and output types (like

regular function types), as well as input and output locations (indicating where the

function starts and ends), and finally any constraints on the function’s arguments.

Function types are written with the following syntax:

C ⇒ (τ, ℓ) → (τ, ℓ)

where C is a list of constraints, and τ and ℓ represent (possibly polymorphic) types

and locations, respectively. For example, the type of the add function in Figures 4.4

and 4.5 would be

[] ⇒ (int, 0) → (void, 2)

indicating that it has no constraints, should be called at stage 0 in the pipeline, and

will finish at stage 2 (one stage after a1).

Contrast the above type with the type of our revised add function, which is

[α < β < γ] ⇒ ((Array.t<1>@β ∗ Array.t<1>@γ ∗ ... ∗ int) , α) → (void, γ + 1)

We use Greek letters to indicate polymorphic variables. The above type states that

the function begins executing at α, and takes two arrays at locations β and γ. It

finishes executing at location γ + 1, as indicated by the end constraint. However,

the function may only be called if the constraints at the beginning hold true, i.e. if

α < β < γ.

Like normal polymorphic functions, the polymorphic variables are instantiated

separately at each call site. In this case, α will be set to the current location in the

pipeline when the function is called, and β and γ will be set to the locations of the

105

function’s array arguments. In order to satisfy the function’s constraints, this means

that it must be called before either of its array arguments have been used, exactly as

one would expect.

4.1.4 Records and Modules

With the addition of location polymorphism, users have the ability to reuse their

code across multiple globals – a prerequisite for modularization. The next step is to

encapsulate the Bloom filter code by combining the various components into a single

record, and wrapping everything up within a module. We have already seen how to

do so, and the code is repeated in Figure 4.8.

While extending most languages with compound and abstract types is relatively

straightforward, in our case, these extensions have unusual consequences for the struc-

ture of the effect system. In particular, consider how we must modify the interface for

the Bloom Filter (originally depicted in Figure 3.5). We must extend the annotations

on its functions to describe how they interact with the global order; in particular, we

must include the function’s constraints, as shown in Figure 4.9.

The interface specifies that the add and query functions should be called before

filter in the pipeline, and end right after it. In other words, if the filter is at location

α, the functions should finish at location α + 1.

However, consider how we would typecheck the add function, reproduced in Figure

4.10. We must first assign locations to both arrays in the Bloom filter type; the naïve

way of doing so is to simply put a0 at some location α and a1 at the next location

α + 1. The function then begins at (or before) location α; when it accesses a0, it

moves to the next location, and similarly for a1. Overall, the function terminates at

location α + 2.

This type is not the one in the interface! The difference is that this type ends

at α + 2, rather than α + 1. The fundamental problem is that the function type

106

1 module BloomFilter {
2 // An abstract record type, with definition hidden from module clients
3 type t = {
4 array<1> a0;
5 array<1> a1;
6 int s0;
7 int s1;
8 }
9

10 // A compile-time function for creating global values.
11 constructor createFilter(int m, int seed0, int seed1) = {
12 a0 = Array.create(m);
13 a1 = Array.create(m);
14 s0 = seed1;
15 s1 = seed2;
16 }
17

18 // Add item to filter
19 fun void add(t filter, int item) {
20 int idx0 = hash(filter.s0, item);
21 int idx1 = hash(filter.s1, item);
22 Array.set(filter.a0, idx0, 1);
23 Array.set(filter.a1, idx1, 1);
24 }
25

26 // Return true if item in filter
27 fun bool query(t<k> filter, int item) {
28 int idx0 = hash(filter.s0, item);
29 int idx1 = hash(filter.s1, item);
30 int<1> b0 = Array.get(filter.a0, idx0);
31 int<1> b1 = Array.get(filter.a1, idx1);
32 return (b0 == 1 and b1 == 1);
33 }
34 }
35

36 // Using the constructor
37 global filter f1 = BloomFilter.createFilter(...);
38 global filter f2 = BloomFilter.createFilter(...);

Figure 4.8: An abstract, compound type for Bloom filters.

1 interface BloomFilterInterface {
2 global type t;
3 constructor t create(int m, int seed0, int seed1);
4

5 fun void add (t filter, int item) [start < filter; end filter];
6 fun bool query(t filter, int item) [start < filter; end filter];
7 }

Figure 4.9: An interface for the Bloom filter module that describes how its functions
interact with the ordered type system.

107

1 type t = {
2 array<1> a0; // Stored at some location α
3 array<1> a1; // Stored at some location α+ 1
4 int s0;
5 int s1;
6 }
7

8 fun void add(t filter, int item) { // Starting location: α
9 int idx0 = hash(filter.s0, item); // Current location : α

10 int idx1 = hash(filter.s1, item); // Current location : α
11 Array.set(filter.a0, idx0, 1); // Current location : α+ 1
12 Array.set(filter.a1, idx1, 1); // Current location : α+ 2
13 }

Figure 4.10: A naïve way of typechecking the modularized Bloom filter.
Unfortunately, this strategy doesn’t match the interface in Figure 4.9.

“leaks” information about the implementation of the module; in particular, the fact

that it contains 2 arrays. A module implemented using 3 arrays (a0, a1, and a2)

would instead end at α + 3. We could in theory create different interfaces for each

implementation, but doing so forfeits a major benefit of abstraction: the ability to

change implementations without modifying the interface.

Hierarchical Locations

Our solution is to allow locations to be nested, in much the same way that record

types allow values to be nested. When we declare a record-type global like a Bloom

filter, we create a single “virtual” location ℓ, representing the location of the record

as a whole. Each global-typed3 field of the record is assigned a subordinate location

“within” ℓ, written as ℓ.0 for the first field, ℓ.1 for the second, ℓ.2 for the third, and

so on. The next global declared will be stored at the next location after ℓ, written

ℓ+ 1.

To accommodate these nested locations, we abandon our linear abstract pipeline

and replace it with a hierarchical abstract heap. Figure 4.11 depicts the structure of

this heap for the program in Figure 4.8, which declares two Bloom filters, f1 and f2.
3Non-global fields such as integers are immutable, and need not be stored in persistent memory.

108

Figure 4.11: An abstract representation of the memory in Figure 4.8. Each node is
annotated with its location, which is given by the preorder traversal of the tree.

The heap consists of a single virtual root node, with each global variable represented

as a child of the root, from left-to-right in declaration order. Record-type globals

induce additional children for each field, also left-to-right in the order those fields

were declared in the record type’s definition.

We have annotated each node in Figure 4.11 (except the virtual root node) with

its location in the abstract heap. These locations correspond precisely to the path

to that node from the root. For example f1 has location 0 (as the 0th child of the

root), while f1.a0 and f1.a1 have locations 0.0 and 0.1, as the 0th and 1st children

of the 0th child of the root, respectively. The global declared after f1 (f2), is assigned

location 1, while its children are 1.0 and 1.1, respectively. Generally, each location

n0.n1.n2, when read from left-to-right, yields the path from the root to that location

in the heap.

Successors We define the successor of a location ℓ, written S(ℓ) or ℓ + 1, to be

the next node on the same level as ℓ. Thus the successor of f1, at location 0 is f2,

at location 0 + 1 = 1. Similarly, the successor of f1.a0, at location 0.0, is f1.a1, at

location 0.1. In general, the successor of a location a.b...z is a.b...(z + 1).

109

Ordering hierarchical locations To prevent ordering errors, the type system

must reason about the order that these locations will ultimately be laid out in a

physical pipeline. When comparing locations, we use the preorder traversal of the

nodes of the heap. Thus, for instance, f0 (location 0) appears earlier in the order

than f0.a1 (location 0.1), which is itself earlier than f1 (location 1). Conveniently,

the preorder makes it easy to compare two locations; they are simply compared

lexicographically as lists of integers. For example, here is the ordering of several

locations:

0 < 1 < 1.0 < 1.4.7 < 1.5 < 1.5.3 < 2

The preorder provides us with two important properties. First, nodes that are

declared first in the program appear earlier in the ordering, exactly as required.

Second, because the successor function S(ℓ) does not care about the structure of

the node at location ℓ, the sucessor of ℓ is always greater than every descendant of

ℓ. This means that the successor function can be used to “skip past” compound

locations without the knowledge that they are, in fact, compound.

Typechecking Take Two

The preorder properties discussed above provide us with the key to successfully type-

checking our modular Bloom filter. The strategy is demonstrated in Figure 4.12. If we

have a filter at location ℓ, we assign a0 and a1 the locations ℓ.0 and ℓ.1, respectively.

The add function will then move from location ℓ to its sublocation ℓ.2.

Since we are guaranteed that S(ℓ) is greater than any sublocation of ℓ, we can avoid

revealing the sublocations to the client by “rounding up” at the end of the function.

Thus we assign the function a type that says that it ends at S(ℓ) = ℓ + 1, rather

than ℓ.2, which precisely matches the interface in Figure 4.9. From the perspective

of a user outside the module, the add function now simply consumes the filter

argument, moving from location ℓ to ℓ+1—all information about the implementation

110

1 type t = { // Stored at some location ℓ
2 array<1> a0; // Stored at some location ℓ.0
3 array<1> a1; // Stored at some location ℓ.1
4 int s0;
5 int s1;
6 }
7

8 fun void add(t filter, int item) { // Starting location: ℓ
9 int idx0 = hash(filter.s0, item); // Current location : ℓ

10 int idx1 = hash(filter.s1, item); // Current location : ℓ
11 Array.set(filter.a0, idx0, 1); // Current location : ℓ.1
12 Array.set(filter.a1, idx1, 1); // Current location : ℓ.2
13 // At the end: "round up" ℓ.2 to ℓ+ 1.
14 }

Figure 4.12: Using hierarchical locations to typecheck the add function in our
Bloom filter module.

of the filter type is properly hidden.

Linearizing the heap

One might be concerned that our heap-based view of memory strays too far from the

actual, linear pipeline we will be compiling to. However, the existence of a total order

on our locations – the preorder – allows us to linearize the heap whenever necessary.

Indeed, note that the leaf nodes of the tree in Figure 4.11 are precisely the array-

type variables of the program – that is, the mutable globals that must be stored in the

pipeline. This means that it is trivial to assign these arrays to stages in the (abstract)

pipeline: simply read the leaf nodes of the tree from left-to-right, and assign them to

stages in that order.

4.1.5 Vectors

The final step to fully modularize our Bloom filter is to parameterize it to allow

instantiation with different numbers of arrays, using vectors and loops. The code for

this is reproduced in Figure 4.13.

Recall that since data-plane programs must ultimately run on the linear switch

111

1 interface BloomFilterInterface {
2 global type t<'k>;
3 constr t<'k> create(int m, int[k] seeds);
4

5 fun void add (t<'k> filter, int item) [start < filter; end filter];
6 fun bool query(t<'k> filter, int item) [start < filter; end filter];
7 }
8

9 module BloomFilter : BloomFilterInterface = {
10 // An abstract record type, with definition hidden from module clients
11 type t<'k> = {
12 array<1>[k] arrs;
13 int[k] seeds;
14 }
15

16 // A compile-time function for creating global values.
17 constructor createFilter(int m, int<'k> seeds) = {
18 arrs = [Array.create(m) for m < k];
19 seeds = seeds;
20 }
21

22 // Add item to filter
23 fun void add(t<'k> filter, int item) {
24 for (i < k) {
25 int idx = hash(filter.seeds[i], item);
26 Array.set(filter.arrs[i], idx, 1);
27 }
28 }
29

30 // Return true if item in filter
31 fun bool query(t<'k> filter, int item) {
32 bpol acc = true;
33 for (i < k) {
34 int idx = hash(filter.seeds[i], item);
35 int<1> b = Array.get(filter.arrs[i], idx);
36 acc = acc and (b == 1);
37 }
38 return acc;
39 }
40 }
41

42 // Using the constructor
43 global filter<2> f1 = BloomFilter.createFilter(1024, [0; 1]);
44 global filter<3> f2 = BloomFilter.createFilter(1024, [2; 3; 4]);

Figure 4.13: A Bloom filter module using vectors and loops to allow instantiations
with different values of k

112

hardware, we allow only bounded loops of the form for (i < k) { ... } that can

be unrolled during compilation. In order to avoid out-of-bounds errors, we include

the length of a vector in its type, and allow indexing operations only if the index can

be proved to be in bounds. Constraints generated from an index declaration i < k

suffice for such proofs in our application domain.

Fortunately, adapting the hierarchical locations of the previous section to accom-

modate vectors is simple. We can view vectors as nodes in the heap with a variable

number of identical children, and when we specify a child we may do so either with

a concrete integer as before, or with a loop variable (for example, 0.1.i where i is a

loop variable). When comparing locations ℓ1 and ℓ2 that involve variables, we say

that ℓ1 < ℓ2 only if that relationship holds for every instantiation of the variables in

ℓ1 and ℓ2. So, for example, 0.i < 1, but 0.i and 0.1 are incomparable.

Loop constraints Since all our loops are bounded, and all vector accesses include

bounds checking, termination is guaranteed and indexing errors do not occur. How-

ever, we do need to ensure that loop bodies will not result in ordering errors when

run multiple times.

To check a loop of the form for (i < k) { e } starting at location ℓinit, we must

ask:

1. Can we safely execute the loop body with i = 0 and starting at ℓinit?

2. For all j > 0, can we safely execute the loop body with i = j, starting at the

ending location of the prior iteration?

To see how we might fail property (1), assume we have two globals of type

Array.t<1>[k] named arr1 and arr2, at locations 1 and 2, respectively. Assume

the function access consumes its argument. Now consider the following loop:

1 access(arr2[0]);

2 for i < k { access(arr1[i]); }

113

At the start of the loop, ℓinit will be 2.1 (one step past 2.0), and on the first

iteration we will access arr1[0], which has location 1.0. Since 1.0 < 2.1, we run into

an ordering error immediately. We can always detect violations of property (1) easily

simply by typechecking the loop body with i = 0.

Detecting violations of property (2) is trickier. If the loop bound k is an unknown

size (e.g. if the loop is inside a size-polymorphic function like add or query), then

naïvely we would need to typecheck the loop body for arbitrarily many iterations,

which would require a universally quantified SMT constraint. Unfortunately, it is

unclear if the type system is decidable in the presence of universal quantifiers4.

Fortunately, there is a better way, which becomes apparent after looking at several

“bad” loops. Consider the following programs,in which arr1 and arr2 are at locations

1 and 2, respectively (their types vary as necessary):

1 for i < k {
2 access(arr1[0]);
3 }
4

(a)

1 for i < k {
2 access(arr1[i]);
3 access(arr2[i]);
4 }

(b)

1 for i < k {
2 for j < k' {
3 access(arr1[j][i]);
4 } }

(c)

Loop (a) will begin at location 0, then access location 1.0 on the first loop. On

the second loop, it will try to access location 1.0 again, causing an error. Similarly,

Loop (b) will first access locations 1.0 and 2.0, but the second iteration it will try

to “go back” to access location 1.1, which is less than 2.0 – another error. Finally,

Loop (c) will execute the outer loop once, ending at location 1.k’.1. On the second

iteration it will try to access location 1.0.1, which is less than 1.k’.1 (if k’ > 0).

The common thread in all these examples is that despite the loops having several

different forms, each of the errors occurred very quickly (within a few iterations of the

outermost loop). This is not a coincidence; we will prove (in §4.3) that, given certain

minor restrictions, every “bad” loop will fail in at most three iterations. In other
4Typechecking event handlers, which are all mutually recursive, requires us to prove implications

of constraints, so the quantifiers are not necessarily at top-level in the SMT formula.

114

words, if the loop doesn’t violate ordering constraints in the first three iterations, it

will not do so in any future iteration.

This insight allows us to reduce property (2) from a universal statement to a finite

one. Rather than having to reason about every iteration of the loop simultaneously, it

suffices to only check the first three. This is a significant victory, and our type system

leverages it to turn a potentially undecidable problem into an obviously decidable

one.

4.1.6 Location Inference

We have now extended the basic system of Pipeline Types to handle a fully general

Bloom filter module, which is configurable in both the number and size of its arrays.

However, this did not come entirely without cost – it is only through location infer-

ence that we have avoided leaving cumbersome location annotations throughout the

program. Inference is crucial for real programs, since it allows the programmer to

think at a high level – rather than reasoning about the low-level details of the effect

system, they can maintain a simple, high-level invariant.

To support inference, the location grammar we use is carefully designed to have

a minimal set of simple constructors: zero (0) and successor (S(ℓ)) constructors to

represent integers, and constant/variable projection operators for record and vector

entries (ℓ.0 and ℓ.i). This choice means that standard unification algorithms [53]

can be directly applied to infer both types and locations. Moreover, we can infer

constraints for each expression and function, and for the program as a whole, by

collecting them as we walk through the program.

In this way, we have almost entirely eliminated locations from the surface syntax

of Lucid. The only places they appear are in the constraints of functions and events,

and the user need only write these explicitly in module interfaces (where we do not

have function bodies available to run inference), and on events with global-typed

115

arguments5. Through location inference, Lucid programmers are provided with the

easy, high level abstraction of “use global variables in the order they are declared”,

and are not forced to learn a new and technical system before they can continue

writing code.

4.2 Formal Type System

In this section, we formalize the system of Pipeline Types that was outlined intu-

itively in the previous section. To do so, we formally define the syntax of Pipe, an

idealized subset of Lucid designed to illustrate and prove correct the central elements

of Pipeline Types. We then define an operational semantics for Pipe, as well as a

typing judgement, and prove the judgement sound with respect to the operational

semantics.

The syntax of Pipe is outlined in Figure 4.14. Like Lucid, it contains a collection

of compile-time integers called sizes, which are used for describing vector lengths and

indices, and may therefore appear in locations6. They include constants n (a natural

number) as well as two different sorts of identifiers, b and κ. We refer to b as a

bounded size — our type system ensures that such identifiers will always appear with

a constraint b < k. Such constraints make vector bounds checking straightforward.

We refer to identifiers κ as unbounded sizes.

Pipe’s type system also includes locations, which describe where in the (abstract)

pipeline a piece of persistent memory is stored. The metavariable z ranges over

concrete locations whereas ℓ ranges over symbolic locations. They use the same

syntax as the previous section: the first location in a pipeline is 0, and the location

S(ℓ) is the successor of the location ℓ. Similarly, ℓ is a location then ℓ.0 is the first
5Inference is complicated for events, since all handlers are mutually recursive, so we require users

to supply constraints instead of trying to infer them. However, constraints only refer to global-typed
arguments; if an event does not have any (the common case), the user need not write any constraints

6Unlike Lucid, Pipe does not contain sized integers (or any integers at all, for that matter).

116

indices ι ::= n | b

sizes k ::= ι | κ

concrete locations z ::= 0 | S(z) | z.0

locations ℓ ::= 0 | α | S(ℓ) | ℓ.0 | ℓ.b

constraints C ::= true | ℓ ≤ ℓ | C ∧ C

base types T ::= Bool | Unit

raw types t ::= T | addr(T) | (t, t) | vector(t,k)
| ∀κ, α.C ⇒ (τ, ℓ) → (τ, ℓ)

types τ ::= t⟨ℓ⟩

values v ::= () | true | false | fun [κ, α] (x : τ, ℓ) → e
| addr(z)
| (v, v)
| vector(v, . . . , v)

expressions e ::= v
| x
| (e, e)
| fst e
| snd e
| vector(e, . . . , e)
| e[ι]
| [e for b < k]
| !e
| e := e
| let x = e in e
| if e then e else e
| for b < k do e

| e[k, ℓ] e

Figure 4.14: Formal syntax for our simplified language.

117

location within ℓ and S(ℓ.0) is the next location within ℓ. Symbolic locations can be

location variables α or hierarchical locations such as ℓ.b where b is an index into ℓ.

Constraints C are conjunctions of inequalities ℓ1 ≤ ℓ2, which describe the order

that locations must appear in memory. There will be more on constraints, locations

and operations over them in the following subsection.

Pipe contains Bool and Unit base types as well as raw types, which include func-

tion types, vectors with elements of type t and length k (vector(t, k)), and pairs

(t1, t2). Rather than using arrays as the basic mutable type, Pipe includes muta-

ble references (addr(T)) for simplicity. There are no references to references (the

hardware only admits “flat” data structures); this is why we distinguish “raw types”

and “base types.” Vectors will be unrolled and their associated contents allocated to

stages at compile time; their length k is a compile-time computed value.

Types proper (τ) are pairs of a raw type and the location ℓ where its value is

stored, written t⟨ℓ⟩. For uniformity in the system, base types like Bool and Unit are

associated with a location even though it is not necessary to do so (the location of

a base type winds up playing no role in the system) — only persistent mutable data

need be allocated to stage memory.

In general, functions have a type of the form ∀κ, α.C ⇒ (τ1, ℓ1) → (τ2, ℓ2). These

functions are non-recursive, call-by-value functions and will be fully inlined at compile

time (the hardware does not have mechanisms for implementing a general purpose

function call). They are polymorphic in both sizes (κ), and in locations (α). For

simplicity, we do not include type-polymorphic functions in Pipe, although they are

present in Lucid; adding them presents no theoretical challenge.

Function preconditions C are a collection of inequality constraints that must be

satisfied prior to calling the function. Functions take an argument with type τ1 and

start at location ℓ1 in the pipeline, returning a result with type τ2 and completing at

location ℓ2 in the pipeline.

118

There are values (v) for each type. Notice that function values do not specify

required function constraints C — they will be inferred during typechecking.

Expressions contain many standard forms. We often use e1; e2 as an abbreviation

for let x = e1 in e2 when x does not appear free in e2. Components of a pair are

projected using the fst and snd operators, while vector projection is written e[ι].

The expression !e reads from the address e (analogous to the Array.get function in

Lucid) and e1 := e2 writes the value of e2 to the address e1 (analogous to Array.set).

A vector comprehension [e for b < k] generates a vector of length k whose ith

component is e with b replaced by i. The construction for b < k do e iterates k times

over the body, replacing b with i in the ith iteration. Finally e1[k, ℓ]e2 calls function

e1 with size vector k, location vector ℓ and value e2 as arguments.

We define capture-avoiding substitution in the usual way, and, for instance, use

the notation e[ℓ/α] for the expression e with all free occurrences of α replaced with

ℓ. We substitute vectors of terms (ℓ) for vectors of variables (α) using the notation

e[ℓ/α]. Analogous notation is used to denote other sorts of substitutions. We also

treat expressions as equivalent if they differ only in the names of bound variables,

which we refer to as “alpha-renaming”.

4.2.1 Locations

Location Representations Locations (ℓ) denote (hierarchical) pipeline stages.

We have defined the syntax of location expressions (see Figure 4.14) via an algebra

that involves a successor function S(ℓ), which denotes the location after ℓ. How-

ever, an expression like S(S(S(0.0).k)) is challenging to understand, and sometimes

inconvenient technically (though other times it is quite convenient, especially for

unification-based type inference, which is why we chose it). There is an isomorphic

notation as a non-empty list of symbolic natural numbers. Such lists have the follow-

119

ing form:

⟨L (list location)⟩ ::= ι+ n | α + n | L.(ι+ n)

The following function f converts the standard representation of locations ℓ into a

list-based representation L.

f(0) = 0 f(α) = α f(ℓ.ι) = f(ℓ).ι

f(S(ℓ)) =


L.(ι+ n+ 1) if f(ℓ) = L.(ι+ n)

f(ℓ) + 1 otherwise

For example, if we apply f to S(S(S(0.0).i)) we get the list 0.1.(i + 2). We use

standard list syntax to refer to elements; in our previous example, the head would

be 0 and the tail would be 1.(i + 2). The function f is bijective, so either location

syntax contains the same information. In a slight abuse of notation, from this point

forward, we will implicitly convert locations back and forth between representations,

using whichever is most convenient at the time. We will use the metavariable ℓ to

range over effects regardless of the representation.

Location Ordering When location ℓ1 occurs earlier in a pipeline than ℓ2, we write

ℓ1 < ℓ2. In general, ℓ1 < ℓ2 is defined (using the list-based representation of locations)

as follows: ℓ1 < ℓ2 iff:

1. ℓ1 is an empty list and ℓ2 is a non-empty list7, or

2. hd ℓ1 < hd ℓ2, or

3. hd ℓ1 = hd ℓ2 and tl ℓ1 < tl ℓ2

If either list contains variables (αs, κs, or bs), we say ℓ1 < ℓ2 if and only if that

relationship holds for all possible instantiations of the variables. That is, we have

0.0 < 0.(i+ 1), but 0.1 and 0.i are be incomparable.
7Although the output of f will never be empty, we may generate an empty list while checking

inequality by use of the tl operator.

120

Location Rounding When processing symbolic locations, we sometimes wish to

jump forward to a location guaranteed to come after the symbolic location. For

example, given the location 0.0.b, we may want to jump to 0.1, which is “ahead”

of (i.e. greater than) 0.0.b, for all b. We call this operation rounding, and write it

round(ℓ, b).

We define round in terms of another function, drop, which simply drops all entries

after the first instance of b it encounters. Below, and elsewhere, we use the notation

b /∈ ℓ to indicate that ℓ does not contain any instances of b.

round(ℓ, b) =


ℓ b /∈ ℓ

S(drop(ℓ, b)) otherwise

where drop(ℓ, b) = ℓ if b /∈ ℓ, and otherwise

• drop(S(ℓ), b) = drop(ℓ, b)

• drop(ℓ.0, b) = drop(ℓ, b)

• drop(ℓ.b, b) = drop(ℓ, b)

• drop(ℓ.b′, b) = drop(ℓ, b)

Location Well-formedness The predicate nri(ℓ, b) is true when ℓ contains no

more than one instance of b (nri stands for “no repeated index”). The predicate

nri(ℓ) is true when ℓ contains no more than one instance of any single b. Finally,

nri(C) is true when all locations ℓ appearing in C satisfy nri(ℓ).

Constraints We write C ⇒ C ′ to mean that C implies C ′, and we write ⊨ C when

C is valid — i.e., for all well-typed substitutions of values for variables, C is satisfied.

121

4.2.2 Pipeline Semantics

Our operational model captures execution of expressions on an abstract pipelined

processor. In this model, computations must be organized so that they access memory

locations in order, possibly skipping over some of the locations they do not need to

access. Immediately after a computation accesses a location, the state of the machine

is advanced — hence, each location is accessed at most once.

In a real PISA architecture, such as the Intel Tofino [1], a single atomic action may

involve several operations, such as a read, a conditional test and a write to the same

state that was read from, but successive atomic actions may not touch the same state.

Augmenting our machine model with additional primitives to model such compound

operations is straightforward; indeed, they are present in Lucid as memops. However,

the abstraction we present in Pipe, with its simplified atomic actions, captures the

essence of such computations.

Formally, the states of our abstract machine are triples (M, z, e), where M is a

pipelined memory, z is our current location in the memory, and e is the expression

to execute. A pipelined memory is a partial mapping from concrete locations to

values.

Figure 4.15 presents selected rules from the small-step operational semantics of

these machines as a relation with the form (M, z, e) → (M ′, z′, e′). The complete

semantics appears in Appendix A.1.

The most interesting rules are Deref-2 and Update-3. Given that the current

location is z and the computation requests a read from address ze, Deref-2 states

that the machine skips forward to ze (which must be later in the ordering than z),

reads the value in memory at that location, and then advances the current location

to S(ze). Update-3 is similar— the machine skips forward from z to ze, writes to ze

and then moves forward to the successor location S(ze).

There are a number of ways such stateful computations can “go wrong.” The

122

Deref-1
M, z, e → M ′, z′, e′

M, z, !e → M ′, z′, !e′

Deref-2
z ≤ ze

M, z, !addr(ze) → M,S(ze),M [ze]

Update-1
M, z, e1 → M ′, z′, e′1

M, z, e1 := e2 → M ′, z′, e′1 := e2

Update-2
M, z, e → M ′, z′, e′

M, z, v := e → M ′, z′, v := e′

Update-3
z ≤ ze

M, z, addr(ze) := v → M [ze := v], S(ze), ()

Vector
M, z, e0 → M ′, z′, e′0

M, z, vector(v0, . . . , vn, e0, . . . , em) → M ′, z′, vector(v0, . . . , vn, e′0, . . . , em)

Index-1
M, z, e → M ′, z′, e′

M, z, e[n] → M ′, z′, e′[n]

Index-2
n ≤ m

M, z, vector(v0, . . . , vm)[n] → M, z, vn

Loop

M, z, for b < n do e → M, z, e[0/b]; ...; e[n− 1/b]; ()

Comp

M, z, [e for b < n] → M, z, vector(e[0/b], . . . , e[n− 1/b])

App-1
M, z, e1 → M ′, z′, e′1

M, z, e1 [k, ℓ] e2 → M ′, z′, e′1 [k, ℓ] e2

App-2
M, z, e2 → M ′, z′, e′2

M, z, v1 [k, ℓ] e2 → M ′, z′, v1 [k, ℓ] e′2

App-3
v1 = fun [κ, α] (x : τ, ℓ) → ebody

M, z, v1 [k, ℓ] v2 → M, z, ebody[v2/id][ℓ/α][k/κ]

Figure 4.15: Pipeline Semantics

123

location ze might not exist. If it does, it might not be later in the ordering than the

current location z (i.e., we might have already passed it in the pipeline). Our type

system will have to present such scenarios from arising.

Also of note are the operational rules for vectors and loops. In particular, at run

time, a loop bounded by n may be unrolled to n copies of its body. A key goal of the

type system will be to prove such an unrolling is safe—that execution of n copies of

the loop body in sequence will not cause an ordering error.

4.2.3 Type Checking

The central goal of the type system is to ensure that the stages of the pipeline are

accessed in order, though there are auxiliary goals as well, such as ensuring that vec-

tors are not indexed out of bounds and that operations are applied to arguments of

appropriate type.

Typing Environments

The typing environment, Ω = (G,∆,K,Γ), consists of:

• G, the global persistent state, a partial map from concrete locations z to base

types;

• ∆, a set of location and unbounded size variables (αs and κs) that are currently

in scope;

• K, a mapping from bounded sizes b to their upper bound, a size (with K written

as a sequence of inequalities b1 < k1, . . . , bn < kn); and

• Γ, a mapping from value identifiers to types.

124

We often refer to part of the environment using dot notation (e.g., Ω.G). We use

the notation Ω.(...) to denote Ω with one of its fields replaced by the body of the

parentheses, e.g. Ω.(∆ ∪∆′) replaces ∆ with ∆ ∪∆′. We use the metavariable Σ to

range over environments in which all but the first entry are empty; that is, Σ is an

environment with the form (G, ∅, ∅, ∅).

Well-Formedness

The locations, sizes and types manipulated by the type checker must be well-formed,

that is, any free variables must be declared in the type checking environment. We

write ∆,K ⊢ k and ∆,K ⊢ ℓ when the free variables of k and ℓ are contained in ∆

and the domain of K. We say K is well-formed with respect to ∆, written ∆ ⊢ K

under the following conditions.

∆ ⊢ ∅

∆ ⊢ K b /∈ Dom(K) ∆,K ⊢ k

∆ ⊢ K, b < k

We use similar notation (e.g., ∆,K ⊢ t, ∆,K ⊢ τ , and ∆,K ⊢ Γ) to describe well-

formedness of other objects. Likewise, we write Ω ⊢ k when Ω.∆,Ω.K ⊢ k and again

similarly for other objects. The formal definition is standard; the complete set of

well-formedness rules appears in Appendix A.2.

We impose additional well-formedness conditions on function types. The condi-

tions represent useful properties of the type system, which we wish to ensure are

respected by any type annotations in the program. The conditions are not strictly

necessary — allowing programs with ill-formed type annotations would not violate

soundness — but enforcing the conditions allows us to prove properties of the system

modularly.

Definition 4.2.1 (Well-Formed Types). If t = fun ∀κ, α.Cf ⇒ (τin, ℓin) → (τout, ℓout),

125

in order to show Ω ⊢ t we additionally require that

• (monotonicity) Cf implies the constraint ℓin ≤ ℓout; that is Cf ⇒ ℓin ≤ ℓout,

and

• (well-constrained) For every constraint x ≤ y in Cf , Cf ⇒ ℓin ≤ x ≤ y ≤ ℓout.

We impose an additional well-formedness condition on G as well. Intuitively, G

represents the locations in memory where values are stored; that is, G should contain

entries for each leaf node in the heap. For example, a G representing the heap in figure

4.11 would have four entries: 0.0, 0.1, 1.0, and 1.1. Our well-formedness condition

requires that no entry in G is a parent or child of another entry. If G did contain two

entries, one a parent of the other, then intuitively the data in those two entries would

“overlap.” Such constructions do not conform to our mental model of how heaps

should be structured and do not arise in practice, though admitting such artificial

structures would not compromise the soundness of the system.

Definition 4.2.2 (Well-Formed Globals). A global map G is well-formed, written

⊢ G, if for any two concrete locations z1, z2 where z1 is a strict prefix of z2, at most

one of G[z1],G[z2] exists.

Constructing Global Maps

In the rest of this chapter, we assume that global maps G are simply handed to

us. However, when checking real programs, we must construct the maps ourselves.

Fortunately, we can do so easily by processing global declarations one-by-one at the

beginning of the program. For example, to construct the map for a program that

begins with

1 global int g1 = ...;

2 global (int, bool) g2 = ...;

3 global int[4] g3 = ...;

126

we would add entries for the locations 0 (for g1); 1.0 and 1.1 (for g2); and 2.0, 2.1,

2.2, and 2.3 (for g3). Note how this map adheres to our well-formedness condition.

Expression Typing

The typing judgement for expressions has the form Ω, ℓin ⊢ e : τ, ℓout, C. Here, τ is

the type of expression e, ℓin denotes our place in the pipeline prior to execution of

e, while ℓout denotes our place in the pipeline after execution of e. C contains any

ordering constraints required for e to be safe to execute. Figures 4.16 and 4.17 present

the typing rules.

Part 1: Values, Functions, and Conditionals Figure 4.16 presents the rules

for values, variables, pairs, functions, let expressions and if statements. Notice that

the beginning and ending locations for values are always the same—they have no

effect on the state of the pipeline. For uniformity, base types (Unit and Bool), are

associated with a location ℓ′. However, these locations are artificial—only mutable

globals need be assigned a stage for storage—and hence the location assigned may be

arbitrary. On the other hand, the global stored at address addr(z) (see rule Addr)

is given a type that includes its location. Values may appear anywhere and hence

never directly give rise to any ordering constraints (the generated constraints C are

always simply true).

Pairs, let expressions and if statements all involve execution of multiple expres-

sions, and may see the current pipeline location advance from ℓ0 to ℓ1 to ℓ2, etc., as

subexpressions are executed. The resulting location of an if statement is the greater

of the two locations of its branches (locations will be bypassed if one branch uses a

location and another does not).

Functions abstract over polymorphic location and size variables and capture the

constraints a caller must satisfy to call them. Rules Abs and App are relatively

127

Unit
Ω ⊢ ℓ′

Ω, ℓ ⊢ () : Unit⟨ℓ′⟩, ℓ, true

True
Ω ⊢ ℓ′

Ω, ℓ ⊢ true : Bool⟨ℓ′⟩, ℓ, true

False
Ω ⊢ ℓ′

Ω, ℓ ⊢ false : Bool⟨ℓ′⟩, ℓ, true

Addr
Ω.G[z] = T

Ω, ℓ ⊢ addr(z) : addr(T)⟨z⟩, ℓ, true

Var
Ω.Γ[id] = τ

Ω, ℓ ⊢ id : τ, ℓ, true

Pair
Ω, ℓ0 ⊢ e1 : t1⟨ℓ.0⟩, ℓ1, C1 Ω, ℓ1 ⊢ e2 : t2⟨ℓ.1⟩, ℓ2, C2

Ω, ℓ0 ⊢ (e1, e2) : (t1, t2)⟨ℓ⟩, ℓ2, C1 ∧ C2

Fst
Ω, ℓ0 ⊢ e : (t1, t2)⟨ℓ⟩, ℓ1, C1

Ω, ℓ0 ⊢ fst e : t1⟨ℓ.0⟩, ℓ1, C1

Snd
Ω, ℓ0 ⊢ e : (t1, t2)⟨ℓ⟩, ℓ1, C1

Ω, ℓ0 ⊢ snd e : t2⟨ℓ.1⟩, ℓ1, C1

Let
Ω, ℓ0 ⊢ e1 : τ1, ℓ1, C1 Ω.(Γ[id := τ1]), ℓ1 ⊢ e2 : τ2, ℓ2, C2

Ω, ℓ0 ⊢ let id = e1 in e2 : τ2, ℓ2, C1 ∧ C2

If-left
Ω, ℓ0 ⊢ e1 : Bool⟨ℓ⟩, ℓ1, C1

Ω, ℓ1 ⊢ e2 : τ, ℓ2, C2 Ω, ℓ1 ⊢ e3 : τ, ℓ3, C3 ℓ2 ≤ ℓ3

Ω, ℓ0 ⊢ if e1 then e2 else e3 : τ, ℓ3, C1 ∧ C2 ∧ C3

If-right
Ω, ℓ0 ⊢ e1 : Bool⟨ℓ⟩, ℓ1, C1

Ω, ℓ1 ⊢ e2 : τ, ℓ2, C2 Ω, ℓ1 ⊢ e3 : τ, ℓ3, C3 ℓ3 ≤ ℓ2

Ω, ℓ0 ⊢ if e1 then e2 else e3 : τ, ℓ2, C1 ∧ C2 ∧ C3

Abs
(G,∆,K,Γ) = Ω ∆′ = Ω.∆ ∪ κ ∪ α

∆′,K ⊢ τin, ℓin (G,∆′,K,Γ[id := τin]), ℓin ⊢ e : τout, ℓout, C
tf = ∀κ, α.C ⇒ (τin, ℓin) → (τout, ℓout) Ω ⊢ ℓ′ Ω ⊢ tf

Ω, ℓ ⊢ fun [κ, α](id : τin, ℓin) → e : tf⟨ℓ′⟩, ℓ, true

App
Ω ⊢ k, ℓ Ω, ℓ0 ⊢ e1 : tf⟨ℓ′⟩, ℓ1, C1

tf = ∀κ, α.Cf ⇒ (τin, ℓin) → (τout, ℓout) Ω, ℓ1 ⊢ e2 : τin[ℓ/α][k/κ], ℓ2, C2

Ω, ℓ0 ⊢ e1 [k, ℓ] e2 : τout[ℓ/α][k/κ], ℓout[ℓ/α][k/κ], C1 ∧ C2 ∧ Cf [ℓ/α][k/κ] ∧ ℓ2 ≤ ℓin[ℓ/α][k/κ]

Figure 4.16: Expression Typing: Values, Conditionals, Functions

128

standard (if notationally intensive), although note the last constraint of the App

rule, which allows locations to be skipped to match the function’s input location.

Part 2: State, Vectors, and Loops Figure 4.17 presents rules for checking state,

vectors and loops.

In the Deref rule, the current location has advanced to ℓ1 just prior to derefence.

Hence, one must prove the address accessed (ℓ2) appears later than ℓ1 in the pipeline

– this is the constraint added in the conclusion of the rule. After execution of the

expression, the current location will be the successor of ℓ2. Because the value returned

from the read has a base type, the location ℓ′ associated with it is irrelevant and may

be chosen arbitrarily. The Update rule follows a similar pattern.

When checking indexing operations, the key is to ensure indices are in bounds.

Fortunately, patterns for using vectors in Lucid programs are limited, so simple

bounds checking rules suffice. The rule Index-const allows constants to be used

to index vectors of known length and checks that the index n is less than the vector

length n′. In rule Index-var, variables b may index vectors only when the bound on

b (given by K) is equal to the length of the vector. This latter rule allows simple loops

to iterate over vectors one location at a time, the common case in our experience.

Notice that these rules do not manipulate the ending location, because vectors are

not themselves global values.

The most interesting rules are the rules for loops (Loop) and comprehensions

(Comp). The Loop rule analyzes the loop body e, as if it starts from some arbitrary

location αstart and with respect to a loop index variable b. Doing so generates a

collection of constraints C that is parametric in αstart and b. Three instances of C are

then created, C0, C1, and C2, representing the constraints that would be generated

on the 0th, 1st, and 2nd iterations of the loop. The premise nri(C,b) requires that

all locations ℓ appearing in C contain at most one occurrence of b (for example, the

129

Deref
Ω, ℓ0 ⊢ e : addr(T)⟨ℓ2⟩, ℓ1, C Ω ⊢ ℓ′

Ω, ℓ0 ⊢!e : T ⟨ℓ′⟩, S(ℓ2), C ∧ ℓ1 ≤ ℓ2

Update
Ω, ℓ0 ⊢ e1 : addr(T)⟨ℓ3⟩, ℓ1, C1 Ω, ℓ1 ⊢ e2 : T ⟨ℓ⟩, ℓ2, C2 Ω ⊢ ℓ′

Ω, ℓ0 ⊢ e1 := e2 : Unit⟨ℓ′⟩, S(ℓ3), C1 ∧ C2 ∧ ℓ2 ≤ ℓ3

Vector
Ω, ℓ0 ⊢ e1 : t⟨ℓv.0⟩, ℓ1, C1 · · · Ω, ℓn−1 ⊢ en : t⟨ℓv.(n− 1)⟩, ℓn, Cn

Ω, ℓ0 ⊢ vector(e1, . . . , en) : vector(t, n)⟨ℓv⟩, ℓn, C1 ∧ · · · ∧ Cn

Index-const
Ω, ℓ0 ⊢ e : vector(t, n′)⟨ℓ⟩, ℓ1, C n < n′

Ω, ℓ0 ⊢ e[n] : t⟨ℓ.n⟩, ℓ1, C

Index-var
Ω, ℓ0 ⊢ e : vector(t, k)⟨ℓ⟩, ℓ1, C Ω.K[b] = k

Ω, ℓ0 ⊢ e[b] : t⟨ℓ.b⟩, ℓ1, C

Loop
(G,∆,K,Γ) = Ω

αstart ̸∈ ∆ Ω ⊢ k G,∆, (K, b < k),Γ, αstart ⊢ e : τ, ℓend, C
nri(C, b) C0 = C[ℓinit/αstart][0/b] ℓ1 = ℓend[ℓinit/αstart][0/b]

C1 = C[ℓ1/αstart][1/b] ℓ2 = ℓend[ℓinit/αstart][1/b] C2 = C[ℓ2/αstart][2/b]

Ω, ℓinit ⊢ for b < k do e : Unit⟨ℓ⟩, round(ℓend[ℓinit/αstart], b), C0 ∧ C1 ∧ C2

Comp
(G,∆,K,Γ) = Ω

αstart ̸∈ ∆ Ω ⊢ k G,∆, (K, b < k),Γ, αstart ⊢ e : t⟨ℓv.b⟩, ℓend, C
nri(C, b) C0 = C[ℓinit/αstart][0/b] ℓ1 = ℓend[ℓinit/αstart][0/b]

C1 = C[ℓ1/αstart][1/b] ℓ2 = ℓend[ℓinit/αstart][1/b] C2 = C[ℓ2/αstart][2/b]

Ω, ℓinit ⊢ [e for b < k] : vector(t, k)⟨ℓv⟩, round(ℓend[ℓinit/αstart], b), C0 ∧ C1 ∧ C2

Figure 4.17: Expression Typing: State, Vectors, Loops

130

location 0.b.1.b would be disallowed; see §4.2.4 for a more detailed explanation). So

long as this is true, it suffices to only check C0, C1 and C2. If they are consistent,

then the loop is safe to execute—there will be no ordering violations regardless of the

number of iterations of the loop at run time. We sketch the proof of this property in

§4.3; a full proof can be found in Appendix A.3 (the Loop Unrolling Lemma).

To determine the current location after execution of the loop, we take the effect at

the end of the loop body, ℓend[ℓinit/αstart], and we “round up” past b. For instance, if

we were just iterating over locations 0.0.0, 0.0.1, 0.0.2, . . . etc., which are all captured

parametrically as 0.0.b, then this rounding operation advances us past all such indices

to location 0.1 by “rounding up,” or chopping off everything after b and moving to

the successor location.

The Comp rule governs type checking of vector comprehensions. It too is an

iterative construct and hence inherits much of the complexity of the Loop rule.

4.2.4 Limitations

Like most type systems, Pipeline Types are incomplete: there exist programs that

execute without error, but which fail to type check. One example of incompleteness

arises while checking if statements. Expressions like the following one will not type

check when the relation between locations of x and y is unknown.

1 if ... then !x else !y

We have considered adding a “max” operator to serve as a join for our algebra of

locations (max(ℓ1,ℓ2) being the larger of the two locations), but doing so appeared to

complicate type inference, and did not appear worth the effort; in practice, we have

not yet encountered any applications that would benefit from such an extension.

One other source of incompleteness arises in the Loop and Comp rules, where

the premise nri(C, b) rules out programs that use the same index variable twice, as

in the expression g[i][i]. The following program fragment demonstrates why this

131

is necessary:

1 for i < 10 {

2 !g[i][i]; // Double indexing -- eventually we'll try to access g[6][6]

3 !g[i][5]; // Single indexing -- eventually we'll try to access g[6][5]

4 }

This program would succeed for the first five iterations, but fail on the sixth. That is,

it is not sufficient to check only the first three iterations of this loop. The nri(C, b)

premise serves to weed out these examples. This restriction does rule out some

legitimate programs – e.g. the above example with line 3 commented out. However,

while there are applications that iterate through elements of a vector, we have not

seen any that iterate along a diagonal like this. So again, this limitation does not

appear to have any practical impact.

4.3 Properties of Pipe

In this section, we discuss selected properties of Pipe and its type system, and finish

with a statement of soundness. Proofs of each property are available in Appendices

A.4 (soundness) and A.3 (everything else).

Value Lemma. The following lemma states that values are inert; they do not have

an effect on the world or generate constraints. They can appear anywhere in the

pipeline.

Lemma 4.3.1 (Value Lemma). If Ω, ℓ ⊢ v : τ, ℓ′, C, then

• (V-1) ℓ = ℓ′ and C = true.

• (V-2) For all ℓ, we have Ω, ℓ ⊢ v : τ, ℓ, C.

Location Weakening. Intuitively, the following lemma states that if we can type-

132

check an expression from a given location, we can also typecheck it from any earlier

location. This is exactly as we would expect, since starting execution from an earlier

location in the pipeline gives us access to all the same data as before.

Lemma 4.3.2 (Location Weakening). Assume that

⊢ Ω and Ω, ℓstart,⊢ e : τ, ℓend, C where ⊨ C. Then, for all ℓ′start ≤ ℓstart,

there is some ℓ′end ≤ ℓend such that Ω, ℓ′start,⊢ e : τ, ℓ′end, C
′, where ⊨ C ′.

Furthermore, either ℓ′end = ℓend or ℓ′end = ℓ′start.

Monotonicity. When the constraints generated from an expression hold, compu-

tations are guaranteed to move forward in the pipeline. The monotonicity property

establishes this fact.

Lemma 4.3.3 (Monotonicity). If ⊢ Ω, and Ω, ℓstart ⊢ e : τ, ℓend, C, then

C ⇒ ℓstart ≤ ℓend.

Bounded Constraints. The following lemma is the first step in proving properties of

loops. It allows us to connect the starting and ending location of a typing judgement

with the constraints generated by that judgement.

Lemma 4.3.4 (Bounded Constraints). If ⊢ Ω, and Ω, ℓstart ⊢ e : τ, ℓend, C,

then for each constraint x ≤ y ∈ C we have C ⇒ ℓstart ≤ x ≤ y ≤ ℓend.

Loop Unrolling. If a loop survives three iterations, it will survive arbitrarily many

more; the following lemma is key to proving this fact. Since it is such an important

property, we provide a high-level proof sketch here as well as the statement of the

lemma.

133

Lemma 4.3.5 (Loop Unrolling). Assume that

⊢ Ω and Ω, αstart ⊢ e : τ, ℓend, C. For all locations ℓinit and bounded

sizes i, define ℓ0 = ℓinit, C0 = C[ℓ0/αstart][0/i] and for j > 0 define

ℓj = ℓend[ℓj−1/αstart][(j − 1)/i] and Cj = C[ℓj/αstart][j/i]. Finally, assume

nri(C, i). Then, if M is a model of C0 ∧ C1 ∧ C2, M is also a model of

∀j ≥ 0.Cj.

We prove this lemma by fixing a model M , then showing that for each constraint

x ≤ y ∈ C, x[j/i] ≤ y[j/i] for all j > 0. To do so, we use the fact that the initial

location of loop iteration j+1 is the same as the final location of iteration j. Together

with the Bounded Constraints lemma, this lets us conclude that x[j/i] ≤ y[j/i] ≤

x[j + 1/i] ≤ y[j + 1/i], so long as we know that the left- and right-most inequalities

hold separately. We know they do when j = 1, since M satisfies C1 and C2, and so

we use the fact that y[1/i] is “sandwiched” between x[1/i] and x[2/i] (and similarly

for x[2/i]) to perform a case analysis on the structure of x and y that shows the

inequality will always hold regardless of j.

An astute reader might wonder why we chose to use C1 and C2 rather than C0 and

C1. This stems from the fact that the initial location of the loop iteration may appear

in constraints, and may not always have the same form between iterations; if it does

not, the sandwiching technique fails. While the initial location of each iteration after

the first follows a set pattern, the initial location of the first iteration is determined

by the code before the loop, and hence may differ from the following iterations. Thus

we can relate the initial locations of iterations 1 and 2, but not of iterations 0 and

1. This may be a limitation of our proof technique, as in practice, we know of no

loops that succeed for two iterations but fail on the third. However, it is not a costly

limitation—our type checker can analyze any of our benchmarks in under two seconds

(§4.4.3).

134

Memory Typing. Execution through the pipeline will proceed without error pro-

vided the state associated with the pipeline has the expected structure. The following

definition describes the required relation between memories M and global specificia-

tions G. When the G in question is clear from context, we may omit it and simply

say “M is well-formed.”

Definition 4.3.1. M is well-formed with respect to G, written M ∼ G,

when it satisfies the following properties.

• M [z] exists if and only if G[z] exists, and

• If M [z] = v and G[z] = T then for all Ω, ℓ, ℓ′, we have

Ω, ℓ ⊢ v : T ⟨ℓ′⟩, ℓ, true

Soundness. The prior lemmas constitute the scaffolding upon which we can prove a

soundness theorem based on progress and preservation. The proofs of these theorems

appear in Appendix A.4.

Theorem 4.3.1 (Progress). Let Σ, z ⊢ e : τ, z′, C where ⊨ C. Let M ∼ Σ.G.

Then either e is a value or there are some M ′, z′′, e′ such that

M, z, e → M ′, z′′, e′.

Theorem 4.3.2 (Preservation). Let Σ, zstart ⊢ e : τ, zend, C and

M, zstart, e,→ M ′, zstep, e
′, where ⊨ C and M ∼ Σ.G. Then M ′ ∼ Σ.G,

and Σ, zstep ⊢ e′ : τ, z′end, C
′, where ⊨ C ′ and z′end ≤ zend.

4.4 Implementation

In this section, we briefly describe our implementation of Lucid’s type system in

OCaml. While Pipe’s type system presents the core of Pipeline Types, our practical

implementation has a number of differences, beyond the obvious fact that it describes

135

a larger language and must handle additional constructs.

The primary difference is that Lucid does not contain addrs, nor does it have

the ! or := operators. Instead, Lucid has built-in global types, which are modeled

as built-in libraries. The most fundamental is the Array library, which contains the

array type and operations for accessing it. Those operations (e.g. get and set)

are presented as entirely normal functions whose type indicates that they consume

their array argument. By calling these functions, programs move forward through

the pipeline even though Lucid doesn’t provide any primitives for doing so.

Similarly, Pipe does not contain recursive functions; while the same is technically

true for Lucid, the ability of events to generate other events allows programmers to

implement recursive programs. As such, all event handlers are essentially mutually

recursive with each other, complicating type inference. We expand upon this challenge

in the next subsection.

Smaller differences include the fact that Lucid allows type polymorphism in addi-

tion to size and location polymorphism, and performs type inference so that functions

need not be annotated with their constraints (although programmers may still do so,

either as a reminder or to impose additional, artificial constraints). Lucid also the

takes the opportunity to make optimizations that don’t appear in Pipe’s formal sys-

tem. For example, the implementation makes use of OCaml’s mutable ref cells to

speed up type inference. It also checks whether the constraints on a function are

actually satisfiable when the function is defined – while it is perfectly legal to write

a function with contradictory constraints, such a function could never be called, and

thus presumably indicates a mistake on the programmer’s part.

4.4.1 Typechecking Handlers

Our formal language omits recursion, and our implementation is similar, since the

switch hardware cannot implement unbounded recursion in a single pass through a

136

pipeline. However, recursive programs can be implemented via the packet recircula-

tion mechanism available on the Tofino chip, which directs packets exiting the chip

back to the beginning of the pipeline. Recirculation is made available to program-

mers via events and event handlers, and hence, event handlers are effectively mutually

recursive with one another, drastically complicating constraint inference.

Rather than attempting to infer constraints for handlers, we opted to require

user-supplied constraint annotations when events are declared. We check that the

constraints hold whenever a new event of the given type is generated, and assume

the constraints in the body of the event handler when it receives such an event. For

instance, we might declare an event foo as follows.

1 event foo(array<bool> x, array<bool> y) [x < y];

Doing so mandates the system prove x < y whenever a foo event is generated, and

allows the foo handler to assume x < y. In other words, these events are a form of

dependent pair.

These constraints place some annotation burden on the programmer, but the

burden is minimal and the explicit annotations serve as useful documentation. In

practice, many events do not require constraint annotations at all – they are only

required when an event takes global variables as parameters, which is rare. In most

cases, we can typecheck the body without any assumptions about the order of the

parameters.

4.4.2 Type Inference

Lucid’s primary type inference algorithm is a generalization of Hindley-Milner type

inference [53] that uses mutable ref cells to short-circuit costly generalization steps.

The algorithm is based on the description given in by Kiselyov [46], although his

“level” system ended up being overkill for Lucid due to its lack of recursive functions.

Internally, the “raw” type of each expression is represented using the raw_ty

137

1 type tyvar =
2 | Unbound of id
3 | Link of raw_ty
4

5 and raw_ty =
6 | TVar of tyvar ref
7 | QVar of id
8 | TInt of size
9 | TBool

10 | TTuple of raw_ty list
11 | ...

Figure 4.18: A snippet of the OCaml code defining the structure of types.

1 type size =
2 | IVar of size tqvar
3 | IConst of int
4 | IUser of cid (* User-defined size *)
5 (* Normal form: list is non-empty, sorted, and
6 no entries are Link, IConst, or ISum *)
7 | ISum of size list * int
8

9

10 type effect =
11 | FVar of effect tqvar
12 | FZero (* Start of the pipeline *)
13 | FProj of effect (* Nested locations, e.g. 0.1 *)
14 | FIndex of id * effect (* Nested locations with indices, e.g. 0.j *)
15 | FSucc of effect (* Successor *)

Figure 4.19: The grammar used to define sizes and effects in our implementation of
pipeline types.

138

datatype defined in Figure 4.198. A raw type may be a regular type (integer, boolean,

tuple, array), or a type variable (TVar or QVar). Regular type variables (tyvar)

may be either unbound (their initial state when created), or they may be a pointer

to another raw type. Quantified type variables (QVar) are used for representing

univerally quantified types in function definitions.

Unification When our type inference algorithm determines two expressions must

have the same type (e.g. if they are being compared for equality), those types are

unified. Unification involves comparing the raw types; if those differ, the unification

fails. If we ever try to compare a TVar against another raw type, we instead modify

the TVar to point at that other type (if it is Unbound), or compare with the type it

points to (if it is a Link). Since TVars are pointers, modifying it affects every copy

of that TVar in the program, speeding up type inference.

Sizes and Effects This strategy is also utilized for locations (internally referred

to as “effects”) and sizes, each of which gets their own variant of TVar that points

to an analogue of tyvar. The structure of the size and effect grammars (depicted

in Figure 4.19) are carefully chosen to allow for unification. The key constraint is

that we should never have equivalent values with different representations; otherwise,

unification is much more difficult.

For effects, this is enforced by representing integers in unary, using the successor

constructor (FSucc). For sizes, this is slightly more complicated, since we might want

to represent an addition of unknown sizes (e.g. if we concatenate an a-bit integer

with a b-bit integer, we get an (a+ b)-bit integer). We partially resolve the problem

of ambiguity by putting lists into a normal form before unification, but this solution

is not perfect. It might occur that a program asks us to unify e.g. a+b with c+d; our

type system cannot represent such a situation, so unification will fail. Fortunately,
8As before, types proper are formed by attaching a location to a raw type.

139

this is an exceedingly rare occurrence – in fact, it has never actually come up in

practice – and so represents only a minor limitation of the system.

Well-formedness checks In addition to applying Pipeline Types, Lucid also per-

forms several simpler (often purely syntactic) checks to make sure that the user’s

code “makes sense”. Memops are the prime example of this: in addition to the fact

that they must typecheck normally, memops are also restricted to just a few syntac-

tic forms, which are verified during this pass. Another check is ensuring that each

non-extern event has exactly one handler associated with it. Finally, there are several

smaller checks, such as ensuring constructors (which are evaluated at compile-time)

don’t call runtime functions.

4.4.3 SMT Encoding

As Lucid’s type system walks through a function or event handler, it accumulates a

collection of constraints that describe the conditions under which it is safe to execute

that function/handler. As such, being able to test if a collection of constraints is

satisfied or satisfiable is crucial. Lucid accomplishes this by encoding the constraints

into a decidable fragment of the Theory of Arrays, and using the Z3 SMT solver [27]

to evaluate them. This subsection describes that encoding.

Although we run a large number of queries per program (once per function call),

each one is typically small enough that we get good performance nonetheless (§4.4.3)

We encode locations using Z3’s Array sort, using a strategy inspired by Bradley

et al. [15]. Z3 Arrays are essentially infinite integer lists; we embed our (finite) lists

into these by setting all unused entries to −1.

Specifically, we encode each location ℓ as a function selectℓ such that selectℓ(i)

is the ith element of ℓ. For concrete locations, and those that contain only bounded

variables, the encoding is straightforward. For each bounded variable b, we introduce

140

selectℓ(i) =


0 i = 0

Bb + 2 i = 1

1 i = 2

−1 otherwise

(a)

selectℓ(i) =


select(Aα, i) 0 ≤ i < Lα − 1

select(Aα, i) + n i = Lα − 1

selectℓ′(i) Lα ≤ i < Lα + len(ℓ′)
−1 otherwise

(b)

Figure 4.20: select functions for ℓ when (a) ℓ = 0.(b+ 2).1 and (b) hd ℓ = (α + n)
and tl ℓ = ℓ′

a new Int-Sort SMT variable Bb, constrain it to be nonnegative, and return it from

the select function as necessary. For example, if ℓ = 0.(b + 2).1, we would add a

new variable Bb, a new constraint Bb ≥ 0, and define selectℓ as in Figure 4.20 (a).

This is easily represented in SMT as a nested if-then-else expression.

The tricky part is encoding locations that begin with a location variable α + n.

Since α represents a location, we have to encode it as an Array-sort variable. In fact,

we create two new variables: Aα and Lα, where Aα represents α itself and Lα is an

Int-sort variable representing the length of Aα.

We then encode our select function as follows. First, we define the Z3 expression

len(ℓ) to be the length of ℓ if ℓ does not begin with a location variable α, and define

len(ℓ) = Lα + len(tl ℓ) otherwise. Now assume hd ℓ = (α+ n) and tl ℓ = ℓ′. Since

αs can only appear at the beginning of a location, we can encode selectℓ′ as in the

earlier paragraph. Using select to denote Z3’s built-in Array indexing operation,

we define selectℓ as in Figure 4.20 (b). We also add constraints that the result of

selecting from Aα is always nonnegative, since our location lists never contain negative

entries.

141

Encoding Constraints

Given our location encoding, we encode the constraint ℓ1 < ℓ2 as

∃i < len(ℓ1). (selectℓ1(i) < selectℓ2(i) ∧ ∀j < i.selectℓ1(j) = selectℓ2(j))

Because the existential quantifier appears at the beginning of the constraint, we

may remove it via Skolemization, resulting in a query that contains only universal

quantifiers. We have found this encoding works quickly without any modifications,

but it is possible to remove the universal quantifiers as well, using techniques from

Bradley et al. [15]. This shows that the problem is decidable, and empirically has

been within the bounds of Z3’s capabilities.

Encoding Implication

When typechecking handlers, we need to check whether the user-supplied constraints

are sufficient to imply the constraints of the body. This is difficult because, naïvely,

the constraint C1 ⇒ C2 is equivalent to C1 ∨ C2, and introducing negation runs the

risk of quantifier alternation rendering our encoding undecidable. Fortunately, there

is a simple fix: the negation of the constraint ℓ1 ≤ ℓ2 is the (positive) constraint

S(ℓ2) ≤ ℓ1. By negating our inequalities before encoding into SMT, we can encode

C1 ∨ C2 solely in terms of positive atoms.

4.4.4 Evaluation

We evaluate our implementation of Pipeline Types on two metrics: performance

and usability.

142

Typing
Module Description LoC time (sec)

Bloom Filter Probabilistic set of elements. 53 0.26
+Aging Entries time out +74 +0.44

Hash table Deterministic set of elements 25 0.10
+Cuckoo hashing Contains multiple stages to deal with collisions +45 +0.22

Hash table w/ timeout Deterministic set of elements, plus the time each was last
touched

65 0.38

+Cuckoo hashing Contains multiple stages, and clears timed-out entries au-
tomatically

+81 +0.31

Bidirectional Map Stores lists of integers in an array, mapping each to/from
its index

39 1.1

Count-min sketch Probabilistically counts the number of times an element
is accessed

70 0.45

+Aging Entries time out +83 +0.71

Table 4.1: Modules implemented in Lucid. All make heavy use of polymorphism,
records, and vectors. When one module builds on other modules, we indicate the

additional lines of code (LoC) with a +. Adding aging to modules was done using a
sliding window technique [55].

Performance

To demonstrate the usefulness of Pipeline Types, we reimplemented the example

applications presented in the original Lucid paper [73], which were written before

Pipeline Types were developed. In the process, we implemented several widely used

networking data structures as stand-alone modules (listed in Figure 4.1), each needed

by one or more applications. All of these modules utilize polymorphism, records,

vectors and abstract types to provide a flexible, reusable, and abstract interface.

We found that on the whole, the example applications benefited substantially

from Pipeline Types. Most programs used conventional data structures, which, in the

original version of Lucid, had to be inlined into a monolithic application9, leading to

lengthy and obscure code. Once those data structures were defined as independent,

reuseable modules, the code became much clearer. In all but one case, the code

became much shorter as well; the exception was the Simple NAT application, in
9Much like the original Bloom Filter code in this and the previous chapter.

143

Prev. New Typing
Application Description Modules Used LoC LoC time (sec)

Stateful Firewall Blocks unso-
licited packets.

Cuckoo Hash w/ Aging 189 37 .68

Closed-loop DNS Defense Identify/counter
DNS reflection

Bloom Filter w/ Aging 215 52 1.8

attacks Cuckoo Hash w/ Aging

*Flow [74] Collects packets
by flow for anal-
ysis.

Vectors only 149 104 0.03

Distributed Prob. Firewall Synchronize
firewall across
multiple
switches

Bloom Filter 66 39 0.28

+Aging Entries in the
firewall time out

Bloom Filter /w Aging 119 40 0.75

Simple NAT Performs net-
work address
translation

Bidirectional Map 41 62 1.5

Historical Prob. Queries Allows queries
of frequency for
traffic flows

Count-min sketch w/ Aging 93 26 1.2

Table 4.2: Applications implemented in Lucid. Lines of code (LoC) is for the
application alone, not including comments or the LoC for the modules on which it

depends (see Table 4.1 for the latter).

which the boilerplate of defining a NAT-specific module was significant compared to

the original program size. A list of these programs appears in Figure 4.2.

The Lucid paper also reported three other applications (simple chain replication,

single-destination RIP, and automatic rerouting), but they were either very simple or

highly specialized for their particular task. We do not report on them here because

they saw essentially no change from Pipeline Types.

For both the modules and the full applications, we found that typechecking times

were low, with even the longest example taking under 2 seconds. This is good; it

means that users are not paying a significant price for the power of Pipeline Types.

144

4.4.5 Usability

When implementing Pipeline Types, we did so with the goal of making them as easy-

to-use as possible. We approached this goal from two directions: making sure the user

got useful feedback, and ensuring the system did not make writing programs harder

by modifying the language’s syntax as little as possible.

Error Messages

Our system of Pipeline Types provides programmers with a simple, high-level directive

to follow in their programs: global values must be used in the order they are declared.

This directive is valuable in its own right, for it provides an easy guideline on how

to write correct programs. Moreover, the guideline also allows us to provide concise,

but extremely useful error messages.

Figure 4.21: The output of the Lucid compiler when given a program that contains
an ordering error.

A sample error message is shown in 4.21. On its surface, the message may not

appear to contain much information; it merely informs the user that there was an

ordering error, and points to the line where it was detected. However, this line number

is extremely useful, since with that information the user need only scan backwards in

the program to find the last global access. With that information, they can see exactly

why the error occurred (the globals will necessarily have been used out-of-order), and

can begin figuring out how to solve the problem.

145

Syntax Changes

Our implementation of Pipeline Types is carefully designed to have a minimal im-

pact on the surface language. Thanks to type inference, we are able to automatically

determine almost everything the type system needs. The only exceptions are con-

straints in module interfaces and on events with global arguments, which are difficult

or impossible to infer.

As a result, the addition of Pipeline Types requires users to manually write those

constraints. However, doing so is not onerous; our constraint syntax is carefully

designed to make no reference to the underlying type system, instead referring to

high level concepts such as start and end, and using variable names instead of

location annotations. Furthermore, the need to write constraints in the first place is

not an everyday occurrence: constraints in module interfaces need only be written

once, while events with global arguments are extremely rare in practice.

In short, the power of pipeline types imposes only minimal burden on program-

mers, while providing them with a powerful guideline for writing correct programs and

useful corrections should they fail to do so. This is a small price to pay to eliminate

one of the most frustrating classes of error in modern dataplane programming.

4.5 Related Work

The past decade has seen the introduction of several new dataplane languages, in-

cluding Domino [70], Chipmunk [32], Lyra [31], and P4All [36]. Like Lucid, these

languages offer higher-level abstractions than P4; unlike Lucid, they then typically

rely on synthesis techniques (often SMT-based) to actually lay out the program in a

switch. For example, Lyra attempts to split a single program across multiple switches,

while P4All solves an Integer Linear Programming problem to find optimal sizes for

each data structure.

146

The common weakness of these synthesis techniques is that, if they fail, they do

so with next to no useful feedback. If a program contains an ordering error, an SMT

solver will conclude that it cannot be laid out along a pipeline, but it will not tell

the user why. This is a significant issue, especially as programs get larger and more

complex! Pipeline types allow Lucid to “screen out” many common errors, making

those compilation errors less mysterious, and easy to debug. Pipeline types need

not be restricted to Lucid, either; we hope that other dataplane languages will take

inspiration and include a similar system.

Effect systems Outside of the domain of networking, type-and-effect systems have

been used to control memory access since the 80s [34] and grew to prominence in the

90s with the work of Tofte, Talpin, Birkedal and others on region inference [77, 76].

These systems protected against use-after-free errors, but did not constrain access

order along a pipeline as Lucid does. Later, researchers developed type systems for

specifying more general “resource usage protocols” [28, 40]. Such systems can specify

constraints on the order in which resources are used, but the protocols involved have

a different character (often characterized by regular languages rather than numeric,

ordered, hierarchical locations), use different technical machinery, and were targeted

at different applications.

An alternative to type-and-effect systems are those type systems based on linear

[35] or ordered logic [60]. Ordered type systems generate similar kinds of constraints to

Pipeline Types, effectively constraining the order in which data is accessed, but they

have not been applied to packet processing pipelines. Moreover, to be effective they

would likely need to be enriched with a variety of new features such as hierarchical

locations, ordering constraints and new rules for managing vectors and loops.

147

Chapter 5

Compiling Lucid

Lucid is designed to be a practical language for writing programs that are run in real

networks. This is accomplished by compiling Lucid programs to P4, which is then

further compiled to switch hardware. In particular, the Lucid compiler produces P4

code that is specialized for compilation to the Intel Tofino1. We chose to target the

Tofino because it is a commonly used programmable switch for networking researchers,

including those at Princeton. In the future, we hope to extend our compiler to other

targets, such as eBPF, FPGAs, or SmartNICs.

This chapter describes the compilation process from Lucid to Tofino-specialized

P4. The remainder of the compilation (from P4 to a Tofino binary) is handled using

Intel’s proprietary P4-to-Tofino compiler. However, the Lucid compiler takes advan-

tage of Lucid’s higher-level code to pre-emptively perform several compilation tasks

that would normally be performed by the Tofino compiler, for example by manually

scheduling statements in match-action tables. In practice, we have found that doing

these tasks at the Lucid level produces superior results; in particular, we can compile

much larger programs, and do so faster, than when using the Tofino compiler (§5.7).
1For example, the P4 code is structured as a series of match-action tables that are designed to

fit within the Tofino’s hardware, and are annotated with the stage we expect them to be placed in.

148

Figure 5.1: A high-level overview of Lucid’s system architecture.

5.1 Compiler Overview

The high-level architecture of this system is illustrated in Figure 5.1. As shown,

the Lucid-to-P4 compilation process can be conceptually split into two stages. The

Frontend Pipeline simplifies the syntax of Lucid, removing higher-level language

constructs to produce a program written in a minimal subset of Lucid that we call

Core Lucid. The Backend Pipeline then takes this simplified program and incre-

mentally transforms it into a P4 program.

The compilation process is structured as a series of source-to-source transforma-

tions of the Lucid/Core Lucid program. Since Core Lucid is a subset of Lucid, the

program remains valid Lucid code until the very final step, when the resulting P4

code is emitted. As a result, we can re-use any Lucid-based infrastructure such as

typechecking or pretty-printing (for debugging purposes) at any point in the compi-

lation process. This also demonstrates the generality of Lucid – we do not need a

specialized IR when compiling to P4, just Lucid itself.

Aside: Frontend vs. Backend The distinction between the Frontend and Back-

end pipelines follows the standard definitions for compilers: the Frontend applies

target-independent simplifications to the source code, and the Backend applies target-

specific transformations that specialize the code for the desired hardware. If in the

future we add the ability to compile to targets besides the Tofino, we will likely re-

149

use the same Frontend passes, but will only be able to re-use some (or none) of the

existing Backend passes.

5.1.1 Core Lucid

Core Lucid is a subset of Lucid that we use as an intermediate representation; the

goal of the frontend pipeline is to produce a Core Lucid program. Specifically, Core

Lucid programs have the following key differences from full Lucid programs:

• No user-defined modules: All programs are “flat”.

• No user-defined functions: All such functions are inlined.

• No events with global arguments: All such events are replaced with copies

that do not take global-typed arguments.

• No non-global compound types: All records, vectors and tuples are replaced

with collections of independent variables.

5.1.2 Attribution

The Frontend Pipeline was developed primarily by the author, with support from

John Sonchack and David Walker. The Backend Pipeline was developed primarily

by John Sonchack; The author’s contributions were in discussing high-level ideas for

passes and reviewing code. The original Lucid paper [73] described an initial version

of this compilation process at a high level.

5.2 Frontend Pipeline

The goal of the Frontend Pipeline is to produce a Core Lucid program by eliminating

high-level language features. This section describes the major transformations that we

150

Figure 5.2: A visualization of the major transformations done in the Frontend
Pipeline, grouped by purpose.

employ to do so. In addition, we employ several common compiler transformations,

such as inlining constant variables and alpha-renaming to ensure all variable names

are unique. Because these transformations are utterly standard, we will ignore them

in this section except for noting when they are required.

Figure 5.2 shows the high-level structure of the Frontend Pipeline. We have

grouped the major transformations according to their purpose, which mirrors the

structure of this section.

5.2.1 Unpacking Modules

Modules are a powerful tool for building modular programs, but the introduction of

multiple namespaces makes syntax-directed transformations painful. One of the first

goals of the frontend is to eliminate modules, creating a single flat program that is

easier to manipulate. We do so in two steps.

Module Aliasing The first step is to remove module alias statements like

module M = M1 if b else M2. We do so in a straightforward way: we evaluate b, and

substitute M with either M1 or M2 throughout the program depending on the result.

We expect b to be a literal, though it may have originally been a variable that was

inlined by a previous pass.

151

Module Elimination The next step is to get rid of module declarations by hoisting

the code inside the module to the top level, as if it had been written non-modularly in

the first place. A side effect of this is to remove the module’s interface, but this is fine;

the abstraction benefits of the interface were already enforced during typechecking.

More problematic is the loss of the module’s namespace; the rest of the program

still refers to its contents as if they were inside the module, so we must adjust such

references to target the new top-level definitions instead. This process is demonstrated

in Figure 5.3.

1 module BF {
2 type filter = ...;
3

4 constructor filter create(...);
5

6 fun add(filter f, int elem)
7 { ... }
8 }
9

10 global BF.filter f =
11 BF.create(...);
12

13 event e(int elem) {
14 BF.add(f, elem);
15 }

(a)

1

2 type BF_filter = ...;
3

4 constructor BF_filter create(...);
5

6 fun BF_add(BF_filter f, int elem)
7 { ... }
8

9

10 global BF_filter f =
11 BF_create(...);
12

13 event e(int elem) {
14 BF_add(f, elem);
15 }

(b)
Figure 5.3: Module Elimination. (a) shows a program using a simple Bloom filter
module BF. (b) shows an equivalent program in which the module is eliminated.

5.2.2 Function Inlining

PISA hardware does not support general-purpose function calls; therefore, we inline

all function definitions during compilation. This process has two steps: Function

Preprocessing and Function Inlining.

Function Preprocessing When we inline functions, we replace their return state-

ments with assignments to a designated return variable. This changes the semantics

of the function, since execution stops at return statements but not at assignments.

152

Accordingly, the Function Preprocessing step reorganizes each function’s body so

that no executable code follows any return statement, using a technique known as

if-conversion [6].

To illustrate our strategy, consider the sequenced statements s1; s2 in a function

body. We first examine s1 to determine if it returns along all control paths, no control

paths, or some (but not all) control paths. If s1 never returns, then we needn’t modify

it, and simply move on to s2. If s1 always returns, then s2 is dead code and may be

eliminated. The tricky part is if s1 only sometimes returns.

In this case, we introduce a boolean variable that tracks whether the function has

reached a return statement, and wrap s2 in an if-statement so it is only executed

if that variable is false. We ensure the variable is set to false at the beginning

of the function, and is set to true immediately before each return statement. This

translation is illustrated in Figure 5.4; we would translate the function f in Figure

5.4a to f_transformed in Figure 5.4b.

In some cases, we may perform optimizations to reduce the impact of the transfor-

mation. For example, if we have an if statement with exactly one branch guaranteed

to return, we may safely move the remaining code into the other branch without

introducing an extra variable or if statement. This technique is demonstrated in

Figure 5.4c.

Function Inlining The next step is to inline the modified function definitions. We

do so in a fairly standard way; when we have a statement containing a function call, we

insert the function body immediately beforehand, with the parameters replaced with

the corresponding arguments. We then create a new variable to hold the function’s

return value, replace all return statements with assignments to that variable, and

replace the call itself with the return variable, as shown in Figure 5.5.

One caveat is that function bodies may mutate their parameters, as in Figure

153

1 fun int f(...) {
2

3 if (...)
4 { return 0; }
5

6 else
7 { do_something(); }
8 // Arbitrary code
9 do_something_else;

10 }

(a)

1 fun int f_transformed(...) {
2 bool returned = false;
3 if (...)
4 { returned = true;
5 return 0; }
6 else
7 { do_something(); }
8 if (!returned)
9 { do_something_else; }

10 }

(b)
1 fun int f_opt(...) {
2 if (...)
3 { return 0; }
4 else
5 { do_something();
6 do_something_else; }
7 }

(c)
Figure 5.4: Function Preprocessing: (a) shows a simple function definition. (b)
shows how to transform it so that no executable code ever follows a return

statement. (c) shows an alternative transformation that does not introduce an extra
variable. Note that the code added in (b) does nothing at this stage of compilation;
it will be useful later, when return statements are converted to variable assignments.

5.6a. When we subsitute arguments for parameters, we need to ensure that we are

not accidentally mutating an existing variable. We do so by creating new variables

for any parameters that are mutated, as demonstrated in Figure 5.6b.

5.2.3 Eliminating Global Event Arguments

Lucid allows users to define events with global-typed parameters, allowing one to

write an event that e.g. updates a different array depending on its arguments. Un-

fortunately, the hardware does not support such dynamic updates: the target of each

update must be known statically, at compile time. Functions with global arguments

do not pose a problem, as they will be inlined; however, handlers cannot be inlined in

general. Instead, we duplicate each event with global arguments so that there is one

copy of the event for each possible argument (or combination of arguments). This is

154

1 fun int f(int x, int y) {
2 if (x < y)
3 { return 0; }
4 else
5 { do_something();
6 return x + y; }
7 }
8

9 event e(int n, int m) {
10 generate bar(f(n, m));
11 }

(a)

1 event e(int n, int m) {
2 int retval = 0;
3 if (n < m)
4 { retval = 0; }
5 else
6 { do_something();
7 retval = n + m; }
8 generate bar(retval);
9 }

(b)
Figure 5.5: Function Inlining: (a) shows a simple function that does not mutate its
arguments. (b) shows how that function can be inlined into the body of event e by

replacing return statements with assignments to a designated variable.

1 fun int f(int x, int y) {
2 if (x < y)
3 { x = y; }
4 else
5 { do_something(); }
6 return x + y;
7 }
8

9 event e(int n, int m) {
10 generate bar(n + f(n, m));
11 }

(a)

1 event e(int n, int m) {
2 int retval = 0;
3 int x_arg = n;
4 if (x_arg < m)
5 { x_arg = m; }
6 else
7 { do_something(); }
8 retval = x_arg + m;
9 generate bar(n + retval);

10 }

(b)
Figure 5.6: Function Inlining: (a) shows a function that mutates its argument. (b)

shows how to inline this function into the body of event e, by creating a new
variable representing the mutated function argument.

demonstrated in Figure 5.7; notice that we do not generate a copy for arr2, since it

had the wrong type.

In rare cases, events may take multiple global arguments. In these cases, they

must also supply constraints about the relative order of those arguments. Figure

5.8a shows an event with two arguments, whose first argument must be earlier in

the global order than its second. These constraints are considered when duplicating

events; Figure 5.8b contains only the copies of foo that have the appropriate ordering.

155

1 global Array.t<32> arr1 = ...;
2 global Array.t<16> arr2 = ...;
3 global Array.t<32> arr3 = ...;
4

5 event foo(Array.t<32> a,
6 int idx,
7 int val) {
8 Array.set(a, idx, val);
9 }

10

11

(a)

1 global Array.t<32> arr1 = ...;
2 global Array.t<16> arr2 = ...;
3 global Array.t<32> arr3 = ...;
4

5 event foo_arr1(int idx, int val) {
6 Array.set(arr1, idx, val);
7 }
8

9 event foo_arr3(int idx, int val) {
10 Array.set(arr3, idx, val);
11 }

(b)
Figure 5.7: Global Argument Elimination: (a) shows an event foo that takes a
global-typed argument. (b) shows how to eliminate foo by replacing it with two
events that have the global arguments baked in. No copy was created for arr2

because it has the wrong type.

5.2.4 Eliminating Non-Global Compound Types

Lucid provides three non-global compound types: records, vectors, and tuples. We

eliminate all of these constructs by unpacking them, so that each entry is a completely

independent variable. Dissociating the entries in this way provides opportunities

for optimization later in the compilation process, since each entry can be treated

individually. Note that we do not eliminate arrays, because they are a hardware

primitive and hence cannot be broken down.

Our elimination pass operates by first translating records and vectors into tuples,

then unpacking those tuples. By this point in the program, functions and sizes have

been inlined, so we know the length of each vector, and don’t need to worry about

returning compound values from functions.

Vector and Record Elimination Eliminating vectors is straightforward. Since we

know the length of each vector, we simply replace each one with a tuple of equal length.

At the same time, we unroll all loops in the program, so each indexing operation into

the vector has a static index. Thus we can simply replace each operation with a tuple

projection at that index.

156

1 global Array.t<32> arr1 = ...;
2 global Array.t<32> arr2 = ...;
3 global Array.t<32> arr3 = ...;
4

5 event foo(Array.t<32> a1,
6 Array.t<32> a2,
7 int idx,
8 int val)
9 [a1 < a2] {

10 Array.set(a1, idx, val);
11 Array.set(a2, idx, val);
12 }
13

14

15

16

17

18

19

20

21

(a)

1 global Array.t<32> arr1 = ...;
2 global Array.t<32> arr2 = ...;
3 global Array.t<32> arr3 = ...;
4

5 event foo_arr1_arr2(int idx, int
val) {

6 Array.set(arr1, idx, val);
7 Array.set(arr2, idx, val);
8 }
9

10 event foo_arr1_arr3(int idx, int
val) {

11 Array.set(arr1, idx, val);
12 Array.set(arr3, idx, val);
13 }
14

15 event foo_arr2_arr3(int idx, int
val) {

16 Array.set(arr2, idx, val);
17 Array.set(arr3, idx, val);
18 }

(b)
Figure 5.8: Global Argument Elimination: (a) shows an event foo that takes two
global-typed arguments, with the constraint that the first must precede the second
in the global ordering. (b) shows how to eliminate this event, by creating one copy

for each pair of valid arguments.

Record elimination is similar to vector elimination, but even simpler since it does

not involve loops or sizes. We replace each record type with a tuple, whose entries

store the fields of the record in declaration order. We replace record projection oper-

ations with tuple projection at the appropriate index.

Vector and Tuple elimination are both demonstrated in Figure 5.9. The programs

in Figures 5.9a and 5.9b both produce the program in Figure 5.9c after vector/record

elimination, respectively.

Tuple Elimination Now all compound values in the program are represented as

tuples, so we may unpack all of them at once. To do so, we split each tuple into a

series of independent variables, one for each entry. Tuple assignments then become

a series of independent assignments, and we can replace each tuple projection with

the variable representing the projected index. In the case of nested tuples, we unbox

157

1 int[3] nums =
2 [f(i) for i = 0 to 2]
3

4

5 int acc = 0;
6 for (i < 3) {
7 acc += nums[i]
8 }

(a)

1 type triple =
2 { int fst; int snd; int thrd; }
3

4 triple nums =
5 { fst = f(0); snd = f(1);
6 thrd = f(2); }
7

8 int acc = 0;
9 acc += nums.fst;

10 acc += nums.snd;
11 acc += nums.thrd;

(b)
1 (int * int * int) nums =
2 (f(0), f(1), f(2))
3

4 int acc = 0;
5 acc += nums[0];
6 acc += nums[1];
7 acc += nums[2];

(c)
Figure 5.9: Vector and Record Elimination: (a) and (b) both show equivalent

programs using vectors and records, respectively. Both programs compile to (c),
which uses only tuples.

them recursively, essentially flattening the tuple. If there are any events that take

tuples as arguments, we adjust the event’s footprint so that it takes each element of

the tuple as a separate argument. Tuple elimination is demonstrated in Figure 5.10.

1 (int * int * int) nums =
2 (f(0), f(1), f(2))
3

4 int acc = 0;
5 acc += nums[0];
6 acc += nums[1];
7 acc += nums[2];

(a)

1 int nums_0 = f(0);
2 int nums_1 = f(1);
3 int nums_2 = f(2);
4

5 int acc = 0;
6 acc += nums_0;
7 acc += nums_1;
8 acc += nums_2;

(b)
Figure 5.10: Tuple Elimination: (a) shows a program implemented using a tuple.

(b) shows how to transform that program to be written without tuples.

158

5.2.5 Final Simplifications

The series of transformations we have described so far are powerful, but most come at

the cost of introducing unnecessary code. For example, unpacking tuples can create

extra assignments when one field of the tuple is modified while others aren’t. Alterna-

tively, inlining a function with an if statement in its body may lead to one branch of

the if always being taken, so the other branch is dead code. We attempt to mitigate

these inefficiencies through a combination of constant folding, variable inlining, and

dead code elimination, which we refer to collectively as the Final Simplifications.

Since all of these are standard techniques, we will not describe them in detail,

instead opting to give a high-level summary. In short, we begin by replacing each use

of each variable with its definition, if doing so will not change the semantics of the

program2. Then, we precompute each expression as much as possible, using normal

arithmetic and boolean identities to simplify those we cannot compute statically.

Finally, we remove any if or match statements that always take a specific branch,

as well as any variables that are no longer used (because all their uses were inlined).

The result is, ideally, a program with many fewer variables, and no dead or useless

code.

Downsides of the Final Simplifications Unfortunately, variable inlining is a

dangeous transformation, since it replaces each use of a variable with its body, po-

tentially increasing the size of the code. One might worry that inlining too many

variables might make the program more difficult to compile, especially if we end up

duplicating large expressions as a result.

We have found that generally, this does not happen. In practice, the primary

bottleneck for compiling to switch hardware has been the number of variables, not the

number or size of expressions. This is because large numbers of variables impose high
2i.e. the variable is neither the result of a stateful computation, nor depends on other variables

that have changed since it was defined.

159

Packet Header Vector pressure (§2.2.4). In contrast, switches can fit large amount

of compute into a single stage so long as there are no dependencies between the

computations. Since multiple copies of an expression are necessarily independent of

each other, duplicating expressions does not generally cause problems.

Nonetheless, we provide users with the option to mark variable declarations or

assignments that should not be inlined, allowing them to reap the benefits of the

Final Simplifications, while selectively avoiding the downsides if necessary.

5.3 Backend Compilation Strategy

The result of the Frontend Pipeline is a Core Lucid program, which is passed as input

to the Backend Pipeline. Like before, the Backend Pipeline is structured as a series of

source-to-source program transformations. However, rather than aiming to simplify

the program’s syntax, the Backend Pipeline instead aims to produce a P4 program

that can be easily compiled to the Tofino. Accordingly, the passes of the Backend

Pipeline are each dedicated to changing the structure of the Core Lucid program to

match the restrictions of the hardware.

The Backend Pipeline is not guaranteed to produce a compiling program, but

it reduces the potential problems greatly, and provides feedback to the user should

compilation ultimately fail. Most Lucid programs compile successfully with minor

tweaks. We evaluate the compiler in greater detail in §5.7.

This section describes the overall strategy and goals of the Backend Pipeline; the

next section describes the actual passes in more detail.

5.3.1 Match-action tables

The basic building blocks of our compiled P4 code are match-action tables. Each

of these has essentially the same semantics as a match statement in Lucid: it matches

160

one or more values against one or more patterns, and executes the code block (an

action) corresponding to the first matching pattern, or a default action if no pattern

matches. An action consists of a set of statements; when an action is invoked, all of

its statements are executed in parallel in the same stage3. Each table is located at a

particular stage of the pipeline; multiple tables can be invoked in the same stage, in

which case all of their chosen actions are executed simultaneously.

There are two kinds of match-action tables. Static tables have their patterns and

actions (their rules) fixed at compile time, while dynamic tables may be modified

by the control plane while the program is running, adding or removing rules on the

fly. Both types of match-action table are represented in Lucid: match statements

represent static tables, while Lucid Tables (table-type globals) represent dynamic

tables. The compiler is free to tinker with static tables (e.g. merging tables, matching

on additional variables) during compilation, but dynamic tables are visible to the

control plane, and so they must present the same interface (i.e. match on the same

set of variables) as in the source program.

The fundamental strategy of the Backend Pipeline is to combine our Lucid han-

dlers into a single list of match-action tables (both static and dynamic), which are

each invoked sequentially. In Lucid terms, our output program should therefore con-

sist of a series of match and table_match statements. However, there are further

restrictions of the form of these statements.

Atomicity

The fact that all statements in each action are executed simultaneously has two

important implications for the rule bodies of our final match statements. In particular,

it implies that:

1. All statements in the body of each rule must be independent of each other, and
3This behavior is specific to the Tofino; it is not part of the general P4 specification.

161

2. All statements in the body of each rule must be atomic, meaning that they

can each be executed in a single pipeline stage.

The capabilities of a single pipeline stage are fairly restricted: the fundamental

operations they can perform are binary operations on variables and constants, hash

statements, and memory (array) accesses. More specifically, we define atomicity as

follows:

1. An expression is immediate if it is either a variable or a literal.

2. The following expressions are atomic:

(a) An immediate expression.

(b) A binary operation whose operands are immediate.

(c) A hash expression whose arguments are immediate.

(d) A function call (such as to Array.update_complex) whose arguments are

immediate, except calls to table_match.

3. The following statements are atomic:

(a) Variable definitions and assignments whose body is an atomic expression.

(b) Generate statements whose body is an atomic call to an event constructor.

(c) Table install statements (table_install) whose arguments are immedi-

ate.

Top-level matches

With this definition, we can define the form of our top-level match statements. Specif-

ically, our output program should be a series of match and table_match statements,

such that, for each match statement,

1. Each expression it matches on is immediate.

162

2. Each statement in the body of each rule is atomic4.

3. Each statement in the body of each rule is independent of the other statements

in that rule’s body.

In addition, we allow table_match statements to be wrapped in simple condition-

als; for simplicity, we defer discussion of this detail to §5.4.3.

Benefits of match-action tables

Match-action tables are the key to efficiently fitting our programs into the hardware.

One of their greatest strengths is the ability to compare large numbers of variables

in parallel. For example, consider the code in Figure 5.11a.

1 if((x == 4 and y == 17)
2 or z == 42) {
3 do_something();
4 } else {
5 do_something_else();
6 }

(a)

1 // Stage 1
2 bool cmp_x = (x == 4);
3 bool cmp_y = (y == 17);
4 bool cmp_z = (z == 42);
5 // Stage 2
6 bool and_x_y = cmp_x and cmp_y;
7 // Stage 3
8 bool b = and_x_y or cmp_z;
9 // Stage 4

10 if(b) {
11 do_something();
12 } else {
13 do_something_else();
14 }

(b)
1 match x, y, z with
2 | 4, 17, _ -> { do_something(); }
3 | _, _, 42 -> { do_something(); }
4 | _, _, _ -> { do_something_else(); }

(c)
Figure 5.11: Testing Equality via Match: (a) shows a program that tests three

boolean values to determine what to do next. (b) shows an inefficient compilation
strategy that evaluates each condition using ALUs. (c) shows a much more efficient

strategy that uses match statements instead. The inefficient code in (b) uses 4
stages, while the strategy in (c) needs only one.

4Note that this implies that no rule body contains a table_match; all table_matches must
happen at top level.

163

Recall that on the hardware, each statement has to be atomic; for arithmetic and

boolean operations, the atomic form is a binary operation. Thus if we want to naïvely

compute the condition for the if statement in Figure 5.11a, we must split it up into

5 separate computations. Due to dependencies between those computations, we must

spread those computations across the pipeline, ultimately taking 3 stages to compute

the condition before finally testing against it in the fourth (Figure 5.11b). In contrast,

using a match statement (i.e. a static match-action table), we can compare all three

variables at once, while encoding the boolean operators in the structure of the rules,

executing the statement in only a single stage (Figure 5.11c).

5.3.2 Well-formedness

The Lucid compiler attempts to automatically enforce as many hardware constraints

as it can. However, not all restrictions can be enforced this way. As a result, our com-

piler requires the following well-formedness conditions of programs that are compiled

to the Tofino; these conditions do not apply to Lucid programs targeting other back-

ends (such as the interpreter, or a future compiler to different hardware). Programs

failing any of these conditions will be rejected by the compiler.

Specifically, we require the following:

1. Each parameter to each event must either begin or end on a byte boundary;

the first argument is assumed to begin on a byte boundary. This is necessary

to ensure the arguments fit neatly into the Packet Header Vectors (PHVs);

arguments that span multiple PHVs are much harder to work with.

2. Each array must fit within a certain amount of memory (the maximum amount

of memory that can be allocated to a single RegisterArray on the Tofino).

3. On each control flow path, each handler may generate at most one event at a

164

network location5 other than the current switch.

The final condition bears further explanation. When compiled to the Tofino,

generate statements do not immediately create a new packet; rather, they store that

event’s arguments in reserved header fields of the current packet. When the current

packet reaches the end of the pipeline, it is cloned, with one copy being made for

each event that was generated during processing. The arguments of those events are

each attached to the corresponding copy, which is then forwarded to the appropriate

destination.

The Tofino hardware only allows packets to be sent to a single network location,

plus possibly the recirculation port. It also cannot send multiple packets out of the

same port at once. Hence we cannot e.g. send event A out of port 1 and event B out

of port 2; similarly, we could not send both events A and B out of port 1. This gives

rise to restriction (3) above.

5.3.3 Output form

The goal of the Backend Pipeline is to produce a program that can be easily compiled

to the Tofino. In particular, we wish to ensure that:

1. There is only one event, which combines the arguments and handler bodies of

all the user-defined events.

2. That event’s handler is a series of top-level statements (as defined in §5.3.1).

3. Each array access is performed using Array.update_complex.

4. For each array, every Array.update_complex call uses the same variables as

arguments.
5That is, a port, a switch identifier, or a multicast group.

165

Figure 5.12: A visualization of the major transformations done in the Backend
Pipeline, grouped by purpose.

Item (1) reflects the fact that ultimately, all packets are processed by the same

pipeline, which must simultaneously implement all event handlers. Item (2) ensures

that we can translate each statement directly to a match-action table. Item (3)

ensures that we can translates array accesses directly to P4 RegisterActions (which

are directly represented in Lucid by Array.update_complex). Item (4) reflects an

underlying hardware constraint that each access to a given array draws its arguments

from the same positions in the PHV; unifying each argument into a single Lucid

variable enforces this.

5.4 Backend Pipeline

The structure of the Backend Pipeline is depicted in Figure 5.12. Conceptually, it can

be thought of as a series of transformations to put the program in the form described

in §5.3.3, followed by a scheduling algorithm to ensure that the program fits into the

Tofino’s hardware resources.

The major steps in this process are:

1. Combining all events and handlers into a single event and handler (§5.4.1).

2. Converting all array accesses to use Array.update_complex, and unifying their

arguments (§5.4.2).

3. Unifying all the table_match statements for each dynamic table, and placing

166

them at top level (§5.4.3).

4. Breaking down statements into their atomic components (§5.4.4)

5. Transforming all boolean computation to happen using match statements (§5.4.5).

6. Scheduling each statement into match statements that can be directly mapped

to Tofino match-action tables (§5.5).

5.4.1 Combining Events

A typical Lucid program consists of many events and handlers that execute on dif-

ferent “types” of packet. However, the resulting P4 program only has one block of

code which processes all packets. We account for this by combining all the events

and handlers in the Lucid program into a single event representing an arbitrary in-

coming packet. Our strategy for doing so is straightforward: we create a new event

whose arguments are a tagged union of the arguments of each other event, and whose

handler matches on the tag and then executes the code of the corresponding event’s

handler. This transformation is illustrated in Figure 5.13.

1 event foo(int arg1, int arg2) {
2 foo_stuff(arg1, arg2);
3 }
4

5 event bar(int arg3, int arg4) {
6 bar_stuff(arg3, arg4);
7 }

(a)

1 event main(int tag,
2 int arg1, int arg2,
3 int arg3, int arg4) {
4 match tag with
5 | 0 -> foo_stuff(arg1, arg2);
6 | 1 -> bar_stuff(arg3, arg4);
7 }

(b)
Figure 5.13: Unifying Events: (a) shows a program with two events. (b) shows how
to combine those events into one by creating a tagged union of their arguments.

After the transformation, the Lucid parser is responsible for ensuring that the tag

is set appropriately for each incoming packet. User-written parsers are automatically

adjusted to do so. Notice that if the tag is somehow set to an unexpected value, no

code will be executed, and the packet will be dropped by default.

167

5.4.2 Converting Memory Accesses

Lucid’s Array abstraction hides much of the complexity of dealing with stateful mem-

ory (i.e., registers) in a P4 program. The chief example is the ordered type system,

but Lucid also hides additional constraints. First, the only memory access operation

supported by the hardware corresponds to Array.update_complex, so we begin by

converting all array accesses to this form. Second, the local values passed to each

operation on the same array must always come from the same locations in the under-

lying packet’s header; in Lucid terms, this means that the arguments must always be

stored in the same variable6.

Converting Array Calls

Our first goal is to convert each array access into a call to Array.update_complex.

We do so in two parts. First, we convert every call (that is not already to

Array.update_complex) into a call to Array.update. This translation is outlined in

Figure 5.14, using id and write to represent memops that always return their first

and second argument (i.e., the value in memory or the local value), respectively7.

1 Array.get(arr, idx);
2

3 Array.getm(arr, idx,
4 getop, localv);
5 Array.set(arr, idx,
6 localv);
7 Array.setm(arr, idx,
8 setop, localv);

(a)

1 Array.update(arr, idx,
2 id, 0, id, 0);
3 Array.update(arr, idx,
4 getop, localv, id, 0);
5 Array.update(arr, idx,
6 id, 0, write, localv);
7 Array.update(arr, idx,
8 id, 0, setop, localv);

(b)
Figure 5.14: Converting Arrays: (a) shows calls to each of the basic Array

functions. (b) shows how those calls can be translated into calls to Array.update
using the primitive memops id and write.

Once we’ve done this, we need only convert Array.update calls. Doing so re-
6Or multiple variables that can be overlaid in the P4 program, but since we cannot control which

variables the Tofino compiler chooses to overlay we ignore this possibility.
7For a refresher on memops, see §3.2.6.

168

quires us to combine two small (2-argument) memops to create a 3-argument complex

memop. For each pair of memop arguments to Array.update, we combine them as

depicted in Figure 5.15, using cell1 to evaluate the memop that writes to memory,

and cell2 for the one that returns to the handler.

1

2

3

4 memop write_op(int memval1,
5 int localval1) {
6 if(<write_cond>) {
7 return <write_e1>;
8 } else {
9 return <write_e2>;

10 }
11 }
12

13 memop read_op(int memval1,
14 int localval2) {
15 if(<read_cond>) {
16 return <read_e1>;
17 } else {
18 return <read_e2>;
19 }
20 }
21

22 Array.update(arr, idx,
23 read_op, v1,
24 write_op, v2);

(a)

1 memop read_write(int memval1,
2 int localval1,
3 int localval2) {
4 bool b1 = <write_cond>;
5 bool b2 = <read_cond>;
6

7 // Value of cell1 is written back
8 // to memory
9 if (b1) { cell1 = <write_e1>; }

10 else {
11 if (!b1) { cell1 = <write_e2>; } }
12

13 // Value of cell2 will be returned
14 // to the handler
15 if (b2) { cell2 = <read_e1>; }
16 else {
17 if (!b2) { cell2 = <read_e2>; }
18

19 if (true) { return cell2; }
20 }
21

22 Array.update_complex(arr, idx,
23 read_write,
24 v1, v2);

(b)
Figure 5.15: Combining Memops: (a) shows two 2-arguments memops. (b) shows

how they can be combined into a single 3-argument memop.

Unifying Array Arguments

Now that all Array accesses have the same form, we must ensure that each access

to each array uses the same variables for the “local value” arguments (the additional

arguments to each memop). Our process is demonstrated in Figure 5.16. We begin

by computing, for each array, the sets of variables used for each argument. If those

sets are singletons (or empty, if all arguments were constant), then we are done.

Otherwise, for each set with at least two elements, we create a fresh variable. We

169

then insert assignments to that variable before each update operation, and use the

variable as the local value argument to the update.

1

2 int v1 = x;
3 int v2 = y;
4

5 if(...) {
6

7 Array.getm(arr, idx, op, v1);
8 } else {
9

10 Array.getm(arr, idx, op, v2);
11 }

(a)

1 int v = 0;
2 int v1 = x;
3 int v2 = y;
4

5 if(...) {
6 v = v1;
7 Array.getm(arr, idx, op, v);
8 } else {
9 v = v2;

10 Array.getm(arr, idx, op, v);
11 }

(b)
Figure 5.16: Unifying Array Arguments: (a) shows a program that accesses an array

using two different local variable arguments. (b) shows how to transform the
program so that the same argument is always used. We use Array.getm here for

illustrative purposes; in practice it would have been transformed into
Array.update_complex by this point.

This approach is slightly inefficient, since it introduces a new variable assignment

that might increase the number of stages used. If the arguments for a particular

local value are never alive at the same time, we can avoid this overhead by directly

overlaying those arguments, storing them in the new variable from the get-go. This

tactic is demonstrated in Figure 5.17; Figure 5.17b shows the naïve translation, while

Figure 5.17c shows the optimized version.

5.4.3 Dynamic tables

Recall that Lucid Tables are a direct representation of dynamic match-action tables on

the hardware. Unlike other types of statements, the hardware does not permit nested

table matches. Hence any access to a Lucid Table (i.e. a table_match statement)

must occur at top level, rather than inside a match statement like everything else.

This poses two challenges. First, a given Lucid Table may be matched along

several different control paths. However, as global objects, Lucid Tables may be

170

1

2 if(...) {
3 int v1 = x;
4 // Do stuff with v1
5

6 Array.getm(arr, idx, op, v1);
7 } else {
8 int v2 = y;
9 // Do stuff with v2

10

11 Array.getm(arr, idx, op, v2);
12 }

(a)

1 int v = 0;
2 if(...) {
3 int v1 = x;
4 // Do stuff with v1
5 v = v1;
6 Array.getm(arr, idx, op, v);
7 } else {
8 int v2 = y;
9 // Do stuff with v2

10 v = v2;
11 Array.getm(arr, idx, op, v);
12 }

(b)
1 int v = 0;
2 if(...) {
3 v = x;
4 // Do stuff with v
5 Array.getm(arr, idx, op, v);
6 } else {
7 v = y;
8 // Do stuff with v
9 Array.getm(arr, idx, op, v);

10 }

(c)
Figure 5.17: Unifying Array Arguments: (a) shows a program that accesses an array

with two different arguments that are not alive at the same time. (b) shows an
inefficient way of unifying those arguments into a single variable v. (c) shows an
optimized transformation in which the unified variable completely subsumes the

original ones.

matched only once per control flow; if that match is at top level, this means they may

only be matched once per program.

The second challenge is that a given dynamic table might be matched along only

some of the control paths. This means we must have a way to sometimes not match

each dynamic table. If the table were static, we could add an additional key to the

table that disables it along specific control paths. However, dynamic tables are visible

to the control plane, which expects them to have the same interface as in the original

program. Adding an additional key changes that interface.

Instead, we allow each top-level table_match statement to be wrapped in a simple

if statement describing its conditions for execution. When we compile the program to

171

P4, we evaluate these conditions using the special gateway tables on the hardware,

which are able to evaluate certain simple conditionals without taking a stage. Hence

the if wrapper does not increase the number of stages required by the program.

Unifying Lucid Table matches

We address both problems by unifying all matches for each table into a single match,

which is placed at top level (but may be wrapped in an if statement). The trans-

formation is somewhat complex, and is both described below and depicted in Figure

5.18. Line references in the description are to Figure 5.18b.

1 match ... with
2 | p1 -> {
3 x = do_something_p1();
4 int ret1 = table_match(tbl, x);
5 do_something_else_p1(ret1);
6 }
7 | p2 -> {
8 y = do_something_p2();
9 int ret2 = table_match(tbl, y);

10 do_something_else_p2(ret2);
11 }
12 | p3 -> { // No match here
13 do_something_p3();
14 }

(a)

1 int arg1 = 0;
2 int match_id = 0;
3 match ... with
4 | p1 -> {
5 x = do_something_p1();
6 match_id = 1;
7 arg1 = x;
8 }
9 | p2 -> {

10 y = do_something_p2();
11 match_id = 2;
12 arg1 = y;
13 }
14 | p3 -> { // No match here
15 do_something_p3();
16 }
17

18 int ret = 0;
19 if(match_id != 0) {
20 ret = table_match(tbl, arg1);
21 }
22

23 match match_id with
24 | 1 -> {
25 do_something_else_p1(ret);
26 }
27 | 2 -> {
28 do_something_else_p2(ret);
29 }

(b)
Figure 5.18: Unifying Table Accesses: (a) shows a program that matches against the
table tbl in multiple places. (b) shows how to transform the code so that it only

contains one match against tbl.

172

Assume we are targeting a particular table tbl. Without loss of generality, tbl

is accessed inside a match statement m8. We create a new temporary variables for

each argument to the table_match9, as well as an integer variable match_id, which

is initialized to 0 (lines 1-2). We then replace each access with assignments to the

argument variables, as well as a new value of match_id for each access (lines 6-7 and

11-12). Lastly, we remove the remainder of the branch after each access, to be moved

later in the program.

Next, we create a new table_match statement after the match, which accesses

the table if match_id is nonzero, storing the result in a fresh variable(s) (lines 18-21).

Finally, we create a new match statement that executes the remainder of the original

branches, depending on the value of match_id (lines 23-29).

One might worry that such drastic reordering of the code might cause problems.

Indeed, if do_something_p3 involves accessing a global that appears after tbl in the

pipeline, the resulting code will be rejected by our ordered type system! Fortunately,

this will not cause compilation problems: unlike the type system, the compiler is not

bound by the declaration order of globals and is free to reorder individual statements

as it sees fit. Since the code from the p3 branch is by definition independent of

the code in the other two branches, the scheduler will always be able to order them

appropriately (see §5.5 for more information).

5.4.4 Atomizing Operations

The next step of our compilation process is to ensure that each statement is atomic,

as defined in §5.3.1. We do so in two steps: breaking up compound operations, and

precomputing function arguments.
8We show how to transform if statements into match statements in §5.4.5. Due to the transfor-

mation in §5.4.1, we know that tbl is accessed inside at least one match statement.
9Note that every access to a given table must have the same number of arguments, which is the

number of keys for that table.

173

Arithmetic Operations

Each arithmetic expression in the Lucid program will be computed on a Tofino ALU.

These ALUs can only handle binary operations; accordingly, we must split up com-

pound expressions like the one in Figure 5.19a. A naïve way to do this is shown in

Figure 5.19b; however, this transformation is inefficient. Since each variable depends

on the one defined before it, each addition must be evaluated in a different stage. As

a result, it takes 3 stages to compile the code in Figure 5.19b.

1

2

3 int x = a + b + c + d;

(a)

1 int tmp1 = a + b;
2 int tmp2 = tmp1 + c;
3 int x = tmp2 + d;

(b)
1 int tmp1 = a + b;
2 int tmp2 = c + d;
3 int x = tmp1 + tmp2;

(c)
Figure 5.19: Breaking down arithmetic expressions: (a) shows a compound
arithmetic expression. (b) shows one way to break it into successive binary

operations. (c) shows a more efficient transformation for associative operations,
which allows tmp1 and tmp2 to be computed in parallel.

Fortunately, for associative operations like addition, we have a better option. We

can split the n-ary addition into a tree of binary additions, as shown in Figure 5.19c.

Now we can compute tmp1 and tmp2 in parallel, so it only takes 2 stages to compute

x instead of 3.

Note that we do not atomize boolean expressions in this way (although we do

precompute them where necessary, as described below); boolean expressions will be

eliminated entirely in the next pass.

Precomputing arguments

Functions (and hash expressions) require each argument to be immediate: either a

constant or a variable. We enforce this by precomputing any non-immediate argu-

174

ments, as shown in Figure 5.20.

1

2

3 f(x, y + z, g(w))

(a)

1 int tmp1 = y + z;
2 int tmp2 = g(w);
3 f(x, tmp1, tmp2);

(b)
Figure 5.20: Precomputing Arguments: (a) shows a program that involves a

function call with non-immediate arguments. (b) shows how we precompute the
value of that argument so it can be replaced with an immediate variable.

5.4.5 Boolean operations

As discussed in 5.3.1, it is generally inefficient to evaluate boolean operations in

ALUs like arithmetic expressions; instead, we should evaluate them using match-

action tables. In Lucid terms, this means we must move all our boolean computation

into the rules of a match statement10. However, match statements (and the match-

action tables they represent) are only able to evaluate certain kinds of comparisons –

specifically, equality tests between a single variable and a constant.

We ensure that all boolean computation happens in match statements using a

series of three transformations:

1. Ensure that all boolean expressions occur in the condition of an if statement.

2. Convert each if-condition into disjunctive normal form (DNF), where the atoms

have one of the following two forms:

(a) <var> == <literal>

(b) <var> != <literal>

3. Translate each if statement into an equivalent match statement.
10The exception are the if statements surrounding table_match statements (§5.4.3); converting

these would result in nested match-action tables, which are disallowed by the hardware. These if
statements are unaffected by the transformations in this section.

175

Converting boolean expressions to if statements

The first step is easy; the transformation is demonstrated in Figure 5.21. We simply

place each boolean expression as the condition of an if statement, which then applies

the appropriate result.

1 bool b = x and y;
2

3

4

(a)

1 bool b = false;
2 if (x and y) {
3 b = true;
4 }

(b)
Figure 5.21: Translating Booleans: (a) shows a program that assigns a boolean
value. (b) shows how to translate that program so that the boolean computation

occurs inside the condition of an if statement.

Normalizing if-conditions

The next step is to create the atoms of the DNF form by eliminating inequality

operations and comparisons between two variables. We make use of the saturating

subtraction operator x |-| y to do so, which returns x - y if x >= y, and 0 other-

wise. Using a combination of saturating and regular subtraction, we can represent

any (in)equality between two expressions as demonstrated in Figure 5.22.

1 bool gt = x > y;
2 bool lt = x < y;
3 bool ge = x >= y;
4 bool le = x <= y;
5 bool eq = x == y;
6 bool ne = x != y;

(a)

1 bool gt = x |-| y != 0;
2 bool lt = y |-| x != 0;
3 bool ge = y |-| x == 0;
4 bool le = x |-| y == 0;
5 bool eq = x - y == 0;
6 bool ne = x - y != 0;

(b)
Figure 5.22: Standardizing comparisons: (a) shows several (in)equality tests. (b)
shows how each test can be replaced with a equality tests between an expression

and a constant.

Since each atom must have a variable on the left, we precompute each subtraction

operation, storing the result in a temporary variable. Then we translate each if-

condition into disjunctive normal form.

176

From if to match

The final step is to convert each if statement into a match statement. Our previous

step ensured that the condition of each if is in disjunctive normal form, and the atoms

are all equality tests between a variable and a constant. We say that a disjunct is

negative if any of its atoms is a non-equality test (using !=), and positive otherwise.

If all disjuncts are positive, then the transformation is easy: each disjunct is a single

rule, with a catch-all rule at the end, as shown in Figure 5.23.

1 if((x == 4 and y == 17)
2 or z == 42) {
3 do_something();
4 } else {
5 do_something_else();
6 }

(a)

1 match x, y, z with
2 | 4, 17, _ -> { do_something(); }
3 | _, _, 42 -> { do_something(); }
4 | _, _, _ -> { do_something_else(); }
5

6

(b)
Figure 5.23: Converting if statements: (a) shows an if statement with only
positive atoms. (b) shows how that statement can be translated into a match

statement.

If we have negative atoms, the transformation is trickier. Since match statements

can only test equality, not non-equality, we must add additional rules to “screen out”

bad values; Figure 5.24 shows how to do this if there is only one negative disjunct.

The first two rules screen out any values where z == 42 or w == 97; the remaining

rules test the other atoms.
1 if(x == 4
2 and y == 17
3 and z != 42
4 and w != 97) {
5 do_something();
6 } else {
7 do_something_else();
8 }

(a)

1 match x, y, z, w with
2 | _, _, 42, _ -> { do_something_else(); }
3 | _, _, _, 97 -> { do_something_else(); }
4 | 4, 17, _, _ -> { do_something(); }
5 | _, _, _, _ -> { do_something_else(); }

(b)
Figure 5.24: Converting if statements: (a) shows an if statement with exactly one
negative disjunct. (b) shows how to translate that if into a match statement by

adding “screening” rules that check for specific values to avoid.

The most difficult part is combining multiple negative disjuncts. We cannot simply

177

concatenate all the rules into one large match, since matching an early “screening”

rule for one disjunct might prevent us from ever checking the rules for the other

disjunct!

1 if((x == 1 and y != 2) or
2 (z == 3 and w != 4)) {
3 do_something();
4 } else {
5 do_something_else();
6 }
7

8

9

(a)

1 match x, y with // First disjunct
2 | _, 2 -> { do_something_else(); }
3 | 1, _ -> { do_something(); }
4 | _, _ -> { do_something_else(); }
5

6 match w, z with // Second disjunct
7 | _, 4 -> { do_something_else(); }
8 | 3, _ -> { do_something(); }
9 | _, _ -> { do_something_else(); }

(b)
1 // Incorrect translation!
2 match x, y, z, w with
3 | _, 2, _, _ -> { do_something_else(); }
4 | 1, _, _, _ -> { do_something(); }
5 | _, _, _, 4 -> { do_something_else(); }
6 | _, _, 3, _ -> { do_something(); }
7 | _, _, _, _ -> { do_something_else(); }

(c)
Figure 5.25: Translating if statements (incorrectly!). (a) shows an if statement
with two negative disjuncts. (b) shows how to generate one match statement for
each disjunct. (c) shows an incorrect way to combine the tables, by concatenating
the non-default rules. This example fails if, for example, (x, y, z, w) = (1, 2, 3, 0).

For example, consider the code in Figure 5.25. The disjuncts in Figure 5.25a will

be translated individually into the match statements in Figure 5.25b. However, if we

simply concatenate the non-default rules, we get the match statement in Figure 5.25c.

This table does not have the same semantics as the original if statement; for example,

if (x, y, z, w) = (1, 2, 3, 0), the original statement will run do_something() but the

new statement will immediately match the first rule, and run do_something_else().

Merging matches To handle if statements with negative disjuncts, we begin by

creating one match statement for each disjunct in isolation, using the strategy de-

scribed above. We then apply a merging algorithm to iteratively combine these match

statements into one. The algorithm computes a cross product of rules: for each rule

178

pair, it creates a new rule that executes the bodies of both input rules. If it finds

certain rules are redundant or unmatchable, those rules are pruned.

1 if((x == 1 and y != 2) or
2 (z == 3 and w != 4)) {
3 do_something();
4 } else {
5 do_something_else();
6 }
7

8

9

(a)

1 match x, y with // First disjunct
2 | _, 2 -> { do_something_else(); }
3 | 1, _ -> { do_something(); }
4 | _, _ -> { do_something_else(); }
5

6 match w, z with // Second disjunct
7 | _, 4 -> { do_something_else(); }
8 | 3, _ -> { do_something(); }
9 | _, _ -> { do_something_else(); }

(b)
1 match x, y, z, w with
2 | _, 2, _, 4 -> { do_something_else(); }
3 | _, 2, 3, _ -> { do_something(); }
4 | _, 2, _, _ -> { do_something_else(); }
5 // | 1, _, _, 4 -> { do_something(); }
6 // | 1, _, 3, _ -> { do_something(); }
7 | 1, _, _, _ -> { do_something(); }
8 | _, _, _, 4 -> { do_something_else(); }
9 | _, _, 3, _ -> { do_something(); }

10 | _, _, _, _ -> { do_something_else(); }

(c)
Figure 5.26: Translating if statements. (a) shows an if statement with two
negative disjuncts. (b) shows how to generate one match statement for each

disjunct. (c) shows the combined table, obtained by taking the cross product of the
tables in (b). The commented branches are redundant and can be pruned.

An example of this process is shown in Figure 5.26. The two disjuncts in Figure

5.26a are translated separately into individual match tables (Figure 5.26b) using the

techniques described above. Then, those matches are combined, taking a cross prod-

uct of their rules. The body of each new rule is do_something() (the then branch) if

either rule executed the then branch; otherwise, the body is do_something_else()

(the else branch).

The algorithm we use is a specialized version of the general match-merging algo-

rithm we will describe in §5.5.4. A key difference in our case is that while the general

algorithm executes the bodies of both rules in each new rule, we only need execute

one: either the then branch (do_something in our example), or the else branch.

179

Since there are only two possible rule bodies, we have more opportunities to prune

redundant rules.

Complexity of merging In general, merging two tables is a multiplicative opera-

tion: combining tables with n and m rules will result in n ·m rules, though we may

be able to prune some of them as in Figure 5.26c. In our case, each initial table has

one rule for each negative atom, plus one rule for all positive atoms, and finally a

default branch. Thus if disjunct i has ni negative atoms and we have k disjuncts, the

final number of rules is

(n1 + 2) · (n2 + 2) · · · (nk + 2) = O(nk),

before pruning, where n is the maximum number of negative atoms in any disjunct.

Thus, in general, merging two tables is exponential in the number of disjuncts.

However, in the specific case of if statements, we can do better: when merging

in a disjunct with only positive atoms, we need not compute a cross product, but

instead simply insert a single rule matching that disjunct at the top. This works

because if the disjunct is true, we immediately know we should execute the then

branch, without needing to consider the other disjuncts. Using this strategy, merging

a positive disjunct into a table is actually a constant-space operation – it increases

the size of the other table by 1, rather than doubling it (or more)!

This means we may exclude all positive disjuncts from our equation above; in

other words, the number of rules generated is exponential in the number of negative

disjuncts, not the overall number of disjuncts.

The complexity of this operation means that we are trading large match statements

for the ability to compute a lot of conditions at once, saving stages. In general, this is

a good deal; the Tofino has much more room for tables than it has stages. Still, it is

useful to keep the number of negative atoms low when possible. Finding opportunities

180

to precompute them for “free” (i.e. in ways that do not increase the number of stages)

is a promising direction for future work.

5.5 Scheduling Lucid

The final step of compilation is to assign each statement to a specific stage in the

Tofino’s packet processing pipeline. There are two primary constraints when doing

so. First, we must respect dependencies between actions: if B depends on A then

we must schedule B in a later stage than A. Second, we must respect the resources

available in each stage of the pipeline, by not scheduling more in a stage than it can

handle.

5.5.1 Immutable Conditions

1 match x with
2 | 10 -> {
3 y = y + 7;
4 z = 12;
5 match y with
6 | 11 -> {
7 w = 19;
8 }
9 }

(a)

1 match x with
2 | 10 ->
3 { y = y + 7; }
4 match x with
5 | 10 ->
6 { z = 12; }
7 match x, y with
8 | 10, 11 ->
9 { w = 19; }

(b)
Figure 5.27: (a) shows a simple program that conditionally executes some

statements. (b) shows how we transform this program so that each statement is
encased in a match statement that specifies the conditions for it to be executed.

During our scheduling algorithm, we will split up blocks of statements such that

each statement is individually annotated with the conditions for its execution, as

shown in Figure 5.27. A consequence of this transformation is that we re-check the

condition at each stage, potentially resulting in code similar to that in Figure 5.28.

However, the transformation depicted in Figure 5.28b is incorrect! The first line

of the match statement mutates x, which might cause us to execute line 2, but not

181

1 match x with
2 | 10 -> {
3 x = x + 1;
4 y = x + x;
5 }

(a)

1 // Unsound transformation!
2 match x with
3 | 10 -> { x = x + 1; }
4 match x with
5 | 10 -> { y = x + x; }

(b)
1 int x_orig = x;
2 match x_orig with
3 | 10 -> { x = x + 1; }
4 match x_orig with
5 | 10 -> { y = x + x; }

(c)
Figure 5.28: Breaking down if statements. (a) shows an if statement that modifies

a variable in its condition. (b) shows an incorrect transformation of the if into
individual annotated statements. The transformation is unsound because the

condition x < 10 may change between lines 2 and 3. (c) shows a sound
transformation, which stores the original value of x in a fresh variable.

line 3, an impossibility in the original program. We solve this issue by storing the

original value of x in a fresh variable, then testing that variable instead, as in Figure

5.28c. Since this variable is fresh, we are guaranteed that is is not mutated later.

To avoid creating unnecessary variables, we only perform this transformation if

the condition might change while executing a branch of the match statement – that

is, if one or more variables in the condition are mutated before the final statement in

the branch.

5.5.2 Dependency graphs

The first thing we need to do when scheduling is to determine how the statements

in the program relate to each other. We do so by constructing a series of graph

representations of the program. An overview of the process for an example program

appears in Figure 5.29. For clarity, we use if statements in the code, although in

practice we would have transformed these into match statements before scheduling.

We begin by constructing a control-flow graph with two kinds of nodes: action

nodes, which represent some computation, and branch nodes, which represent

182

branching control flow. Edges represent the ability for control to flow from one

node to another, and are annotated with the conditions necessary for that to occur.

This graph is represented in Figure 5.29(1); for brevity, statements are referred to

by the names indicated in the comments of the code block. Note that since we

have eliminated loops, and Lucid does not allow recursive functions, this is always a

directed acyclic graph (DAG).

The next step is to annotate each node in the graph with its conditions for execu-

tion. We remove branch nodes by adding edges from their parent(s) to their succes-

sors, and annotate each successor with the conditions on the original edge, adding to

any existing annotation. The result is a graph with only action notes, each of which

is annotated with all the conditions to execute it, including prior control flow deci-

sions. This graph is represented in Figure 5.29(2). If we converted this graph back

to a Lucid program, it would have the form demonstrated in Figure 5.27b. Note that

thanks to the transformation in Figure 5.28, we are guaranteed that this operation

does not change the semantics of the program.

The final step is to turn the annotated control-flow graph into a dependency graph,

in which an edge from statement s1 to s2 indicates that s2 must be executed after s1

due to a dependency. We consider three types of dependency: read/write (s1 reads

a variable that s2 modifies), write/read (s1 modifies a variable that s2 reads), and

write/write (both modify the same variable). We construct the graph by computing,

for each node, the set of its descendants that directly depend on the variables it

includes. We then add an edge to each element of that set. Transitive dependencies

(i.e. v1 depends on v2, which depends on v3) are implicit in the structure of the

graph. The result of this step is depicted in Figure 5.29(3).

183

1 Array nexthops = new Array<<32>>(NUM_HOSTS);
2 Array pcts = new Array<<32>>(NUM_PORTS_X3);
3 Array hcts = new Array<<32>>(NUM_HOSTS);
4 memop plus(int cur, int x) { return cur + x; }
5

6 event count_pkt(int dst, int proto) {
7 int idx = Array.get(nexthops, dst); // nexthops_get
8 if (proto != TCP) { // if_0
9 if (proto == UDP) // if_1

10 idx = idx + NUM_PORTS; // idx_eq_0
11 else
12 idx = idx + NUM_PORTS_X2; // idx_eq_1
13 }
14 Array.set(pcts, idx, plus, 1); // pcts_fset
15 if (proto == TCP) // if_2
16 Array.set(hcts, dst, plus, 1); // hcts_fset
17 }

nexthops_get

idx_eq_1idx_eq_0

pcts_fset

hcts_fset

proto != TCP &&
proto != UDP proto == UDP

proto == TCP

nexthops_get

idx_eq_1idx_eq_0

pcts_fset

proto != TCP &&
proto != UDP proto == UDP

hcts_fset

proto == TCP

nexthops_get

if_0

if_1

idx_eq_1idx_eq_0

pcts_fset

if_2

proto != TCP

proto != UDP proto == UDP

proto == TCP

hcts_fset

proto == TCP

(1) Table Control Graph (2) Control Graph with
Inlined Conditionals

(3) Table Dataflow Graph

Figure 5.29: Top: a Lucid handler using only atomic statements. Bottom: (1) the
handler represented as an control flow graph, (2) the same graph with execution
conditions inlined, and (3) the graph optimized to require fewer pipeline stages.

Image taken from original Lucid paper [73].

184

5.5.3 Layout Algorithm

The result of the previous process is a directed acyclic graph in which nodes are indi-

vidual statements annotated with their conditions for execution, and edges represent

direct dependencies between statements. Our final goal is to assign every node to

a pipeline stage, such that each node is in a later stage than its predecessors, and

such that all the nodes assigned to each stage fit in that stage’s resource constraints

(described below).

To do so, we treat each node as a very small match-action table, as depicted in

Figure 5.28. We walk across the graph nodes in topological order, attempting to

assign each node to the earliest stage its dependencies allow. If the stage has no room

for more tables, we attempt to merge the node into an existing table in that stage,

using the algorithm described in §5.5.4. If this fails for each existing table (because

the merged table violates the resource constraints), we attempt to assign the node to

the following stage instead, and continue in this way until we run out of stages or the

node is successfully assigned.

Resource constraints We maintain an internal model of the resources available

to a single table, as well as in each stage of the Tofino’s pipeline. For tables, we track:

• The maximum number of statements in each of its actions,

• The maximum number of bits it can match (i.e. the sum of the sizes of the

matched variables),

• The maximum number of different arrays it can access, and

• The maximum number of different hash units it can access.

For stages, we track:

• The maximum number of tables in the stage,

185

• The maximum amount of total memory that can be allocated to tables in this

stage,

• The maximum number of different arrays that can be accessed from this stage,

• The maximum number of different hash units that can be accessed from this

stage,

• The maximum number of bits that can be collectively emitted by hash units at

this stage, and

• The maximum amount of total memory that can be allocated to arrays in this

stage

There are some resource constraints that we do not model: in particular, we only

consider some constraints regarding memory allocation within a stage. In addition

to memory taken up by stages and arrays, there are some memory overheads for

actions (in the form of pointers and parameters to those actions) and some overhead

when memory in a stage is split up between multiple tables and/or arrays, which

happens often. It is conceivable that our scheduler could model these constraints in

the future, but doing so requires more work to understand and represent them. If the

Tofino compiler finds that we have overfilled a stage, it will automatically shift tables

down to later stages as needed.

Combining memory accesses Before we schedule our statements, we make one

final tweak to the graph. Since each array must be stored in a single stage, all accesses

to that array must happen in the same stage. We enforce this by combining all the

graph nodes for each array access into one, merging the tables as described below.

Here is the grand payoff of our ordered type system: because the arrays are accessed

in order, it is impossible for there to be a dependency cycle between two different

186

arrays. Therefore, after merging these nodes, the graph is still a DAG, and so it is

safe to walk over it topologically.

5.5.4 Merging tables

The key operation in our layout algorithm is merging two tables to create a single

larger table. Doing so is essentially a cross-product operation: for each pair of rules,

we create a new rule that combines the patterns and the bodies; if both patterns

match, we execute both bodies. The basic transformation is illustrated in Figure 5.30;

we use match statements to represent tables (both here and in our implementation).

1 match x with
2 | 1 -> { body_1(); }
3 | _ -> { body_2(); }
4

5 match y with
6 | 2 -> { body_3(); }
7 | _ -> { body_4(); }

(a)

1 match x, y with
2 | 1, 2 -> { body_1(); body_3(); }
3 | 1, _ -> { body_1(); body_4(); }
4 | _, 2 -> { body_2(); body_3(); }
5 | _, _ -> { body_2(); body_4(); }
6

7

(b)
Figure 5.30: Merging Tables: (a) shows a program with two tables that match on
different variables. (b) shows how to merge those tables into one by taking a cross

product of their rules.

Recall that per our layout algorithm, we will only try to merge two statements if

their bodies are independent; hence we do not need to worry about the order in which

we execute them in the bodies of the merged table. We also enforce the existence of

a default branch for each match statement by adding one (whose body is a no-op) if

necessary.

After merging two tables, we use a SAT solver (namely, Z3 [27]) to check to see if

any rules are unreachable (because their conditions are subsumed by prior rules) or

redundant (because they are immediately followed by rules with the same body and

broader conditions). Examples of this are illustrated in Figure 5.31. In both cases,

we prune any such rules that we find.

187

1 match x, y with
2 | _, 2 -> { body_1(); }
3 | 1, 2 -> { body_2(); } // Unreachable
4 | _, _ -> { body_3(); }
5

6 match x, y with
7 | 1, 7 -> { body_4(); } // Redundant
8 | 1, _ -> { body_4(); }
9 | _, _ -> { body_5(); }

Figure 5.31: Examples of rules that are unreachable (line 3) or redundant (line 7)
and can therefore be pruned.

Combining expressions In Lucid, it is permissible to write an expression that

matches a given variable multiple times per rule, e.g. match x, y, x with Such

expressions are disallowed in hardware match-action tables; each variable must appear

in only one position of a given match. Hence if we are merging two tables that each

match against the same variable, we must combine their patterns for that variable.

Doing so can be easily described piecewise. Recall that Lucid permits three types

of pattern: wildcard patterns (_), which match anything, literal patterns (e.g. 0)

which only match that value, and bitstring patterns (e.g. 0b0**1) which match

integers bitwise, with * acting as a wildcard. For simplicity, we can treat literals at

bitstrings with no wildcard bits, and treat wildcards as bitstrings with only wildcard

bits.

To combine two bitstring patterns, compare them bitwise. For each bit:

1. If one is a wildcard bit, return the other one.

2. Otherwise, if the bits are the same, return that bit.

3. Otherwise, the patterns are contradictory, and cannot be combined. Hence the

rule that required their combination cannot be matched, and so may be pruned.

An example of merging tables with overlapping expressions is given in Figure 5.32.

188

1 match x, y with
2 | 1, 2 -> { body_1(); }
3 | _, _ -> { body_2(); }
4

5 match y, z with
6 | 2, 3 -> { body_3(); }
7 | 4, 5 -> { body_4(); }
8 | _, _ -> { body_5(); }

(a)

1 match x, y, z with
2 | 1, 2, 3 -> { body_1(); body_3(); }
3 | _, 2, 3 -> { body_2(); body_3(); }
4 // Merge of 1, 2 and 4, 5 gets pruned
5 | _, 4, 5 -> { body_2(); body_4(); }
6 | 1, _, _ -> { body_1(); body_5(); }
7 | _, _, _ -> { body_2(); body_5(); }
8

(b)
Figure 5.32: Merging Tables: (a) shows a program with two tables that both match

on the same variable y. (b) shows how to merge those tables by taking a cross
product of their rules, and disregarding combinations with incompatible patterns.

5.6 Emitting P4

When we are done with the scheduling phase, we are left with a Core Lucid program

that very much resembles a P4 program. The very last step is to actually create

that P4 program, translating the Core Lucid constructs to their P4 counterparts.

Because the scheduled program is so close to P4, this final step is little more than an

assembler.

• Arithmetic operations are translated directly to P4, and executed on ALUs.

• match statements are translated to static match-action tables, whose rules are

the patterns and whose actions are the associated code blocks.

• Lucid Tables are translated to dynamic match-action tables, and their inter-

faces are exposed to the control plane.

• Actions are translated to open functions (a P4 construct that behaves like a

function, except they operate using the definitions of variables at their call site,

not at their declaration site).

• Hash statements are implemented using the hash units provided at each stage.

• Memops are translated to RegisterActions.

189

• Array updates are implemented in stateful ALUs, using those RegisterAc-

tions.

• Parsers are translated to P4’s own parser language; the body of each branch

of each match statement is translated to a separate state.

• Event arguments are represented as special, Lucid-defined header fields of

the packet.

• Event generation is implemented by setting the appropriate header values.

• Event delays are implemented using the Tofino’s pausable ingress queues:

delayed events are put in a special queue, and checked at regular intervals to

see if their delay has expired.

5.7 Evaluation

We evaluate our compiler on two metrics:

1. Speed: are compilation times reasonable?

2. Efficiency: how many resources do compiled programs take?

To evaluate these, we compiled each of the sample programs from the Chapter 3

evaluation to a Tofino program. The results are summarized in Figure 5.33.

5.7.1 Compilation Time

As shown in Figure 5.33, all programs compiled fairly quickly, with most compiling in

under a minute and even the longest compilation time below 5 minutes. Notably, the

P4-to-Tofino compile times are shockingly low, with all programs finishing in under

a minute. This stands in stark contrast to prior work, in which Tofino compilations

190

Time (sec) Tofino
Application Description Lucid P4 Stages

Stateful
Firewall
(SFW)

Blocks connections not initiated by trusted hosts. Control
events update a Cuckoo hash table.

208 54 10

Fast
Rerouter
(RR)

Forwards packets, identifies failures, and routes. Control
events perform fault detection and routing.

51 21 5

Closed-loop
DNS Defense
(DNS)

Detects/blocks DNS reflection attack with sketches & Bloom
filters. Control events age data structures.

30 26 8

*Flow [74] Batches packet tuples by flow to accelerate analytics. Control
events allocate memory.

30 26 12

Consistent
Shared State
(SRO)[86]

Strongly consistent distributed arrays. Control events syn-
chronize writes.

17 <1 4

Distributed
Prob. Firewall
(DFW)

Distributed Bloom filter firewall. Control events sync. up-
dates.

14 23 7

+Aging Adds control events for aging. 61 30 9

Single-dest.
RIP

Routing with the classic Route Information Protocol (RIP).
Control events distribute routes.

17 14 6

Simple NAT Basic network address translation. Control events buffer
packets and install entries.

10 12 5

Historical
Prob. Queries
(CM)

Measures flows with sketches for historical queries. Control
events age and export state periodically.

12 15 3

Figure 5.33: Compilation information for the applications from the original Lucid
paper, originally shown in Figure 3.16. The first ”Time” column indicates the time

for our compiler to compile the Lucid program (to P4). The second column
indicates the time for the Tofino compiler to compile that P4 program to a binary.

The final column details the number of pipeline stages used by that binary.

can take several minutes or hours – in one extreme case, the compiler took multiple

days to produce a working binary [37]. In that light, even the 5-minute compile time

seems quite reasonable! In addition, the low overall compile times provide evidence

that the Lucid compiler’s optimizations really work, and provide the Tofino compiler

with a much easier compilation problem.

191

5.7.2 Resource Efficiency

When compiling a dataplane program, there is one overarching goal: make it fit.

Unlike conventional programs, “larger” dataplane programs (in terms of number of

stages, size of tables, etc.) do not take longer to execute; it takes a packet the same

amount of time to pass through a pipeline regardless of how much work that pipeline

is doing. As a result, the primary metric for success of a compiler is its ability to fit a

program within the pipeline, not necessarily its ability to make the program “small”.

Nonetheless, the size of the resulting program is a good benchmark of the com-

piler’s optimality: while the difference between 5 and 8 stages may be unimportant,

the difference between 10 and 11 stages is enormous if the hardware only provides 10

stages. Furthermore, all compiler resources are “contained” by pipeline stages (e.g.

the amount of memory is measured per stage, not as a total amount). Hence the

number of stages used by a program is an reasonable measurement of that program’s

overall resource efficiency.

Figure 5.33 reports the number of stages used by each of our programs. All of them

fit within the Tofino’s pipeline. In practice, we have found that the Lucid compiler

is not optimal: that is, it sometimes takes more stages than a human would for the

same program. We have found several common sources of inefficiency; some can be

dealt with automatically via improvements to the compiler, some are difficult to solve

automatically but can often be easily fixed by users, and some are idiosyncratic and

may not be an instance of a more general class of problem. A non-exhaustive list of

common problems, along with potential fixes, appears below.

PHV Allocation Packet header vectors (PHVs) are the header locations in a packet

in which local variables are stored; in several ways, they are analogous to registers in

traditional computers. There are several constraints on how PHVs are used, which

are very complex and not represented in Lucid (and so are not accounted for during

192

compilation). Issues arise when too many interdependent variables are alive at the

same time, and can often be solved by the user adding hash statements, which are

able to create fresh copies of variables without the dependencies of the original; an

example is shown in Figure 5.34.

Performing this transformation automatically is difficult, since we have a limited

number of hash units, and determining where to use them is nontrivial. A different

tactic to minimize PHV errors is to aggressively try to overlay different variables that

are not alive at the same time, in order to reduce the total number of PHVs used.

This could be particularly useful when unifying arguments to an array update or

table_match, since overlaying the arguments allows us to entirely avoid declaring a

temporary variable.

1 // PHV Error: x1, ..., x20 are
2 // all alive at the same time,
3 // and interdependent
4 int tmp1 = x1 + x2;
5 int tmp2 = tmp1 + x3;
6 int tmp3 = tmp2 + x4;
7 ...
8 int tmp19 = tmp18 + x20;

(a)

1 int tmp1 = x1 + x2;
2 int tmp2 = tmp1 + x3;
3 int tmp3 = tmp2 + x4;
4 ...
5 // Identity hash
6 int tmp10' = hash(1, tmp10);
7 ...
8 int tmp19 = tmp18 + x20;

(b)
Figure 5.34: Fixing PHV Errors: (a) shows a program in which 20 different

variables need to be placed in the same PHV container. (b) shows how to break this
dependency chain using an identity hash. For the purposes of PHV constraints,
tmp10' does not depend on any of the prior tmp variables (although of course it

retains a semantic dependency on those variables).

Inlining hash statements In the hardware, hash units are situated earlier in each

stage than tables and arrays. This means that sometimes, if a hashed value is used as

a key to an array, it is possible to compute the key and then access the array in the

same stage. Lucid does not currently perform this optimization, but doing so would

not be theoretically challenging.

193

Maximizing memops Often, a user will want to retrieve a value from an array,

compare it to another value, and branch on the result (as in Figure 5.35a). Doing so

naïvely takes three stages: one to get the value, one to precompute the comparison,

and one to branch on the result. This could be shortened to two stages by writing a

memop that includes the comparison as part of the array update, as shown in Figure

5.35b. One could imagine performing this transformation automatically, though it

would require an analysis to determine where it is possible.

1 int x = Array.get(arr, idx);
2 // Note: must be precomputed
3 if (x < y) {
4 ...
5 }

(a)

1 // Memops always return an int
2 memop less(int a, int b) {
3 if (a < b) {
4 return 1;
5 } else {
6 return 0;
7 }
8

9 int b = Array.getm(arr, idx,
10 less, y);
11 // No precomputation necessary
12 if (b == 1) {
13 ...
14 }

(b)
Figure 5.35: Memop Optimization: (a) shows a program that retrieves a value from
memory, then compares it to another variable. (b) shows how the program could be
optimized (saving a stage) by performing the comparison simultaneously with the

retrieval.

Uninitialized variables To prevent undefined behavior, Lucid does not permit

users to declare uninitialized variables. In P4, however, variables are declared and

initialized separately, and the initialization may take an extra stage. For example, the

code in Figure 5.36a will assign x to 0 in one stage, and then immediately overwrite

it in the next stage if cond is true. We could instead perform both operations in one

stage by permitting undefined variables in Core Lucid, and ensuring that the variable

is assigned along every control flow path, as shown in Figure 5.36b.

194

1 int x = 0;
2 if (cond) {
3 x = 10;
4 }
5

6

(a)

1 int x;
2 if (cond) {
3 x = 10;
4 } else {
5 x = 0;
6 }

(b)
Figure 5.36: Avoiding Initialization Overhead: (a) shows a program that initializes
the variable x, then immediately reassigns it. (b) shows an optimized program that

does not spend an extra stage assigning the initial value to x.

Better heuristics Our current scheduling algorithm is greedy, and uses a heuristic

to determine which tables to attempt to merge. It is possible that we could improve

its performance with a better heuristic.

Precomputing negative atoms As discussed in §5.4.5, the number of rules we

produce when converting an if statement to a match is exponential in the number

of negative atoms in the condition. Although tables with many rules are no slower

to execute, it takes significantly longer to merge them with other tables, and they

take up more room in the stage. We could try to reduce the size of our tables by

precomputing negative atoms, as shown in Figure 5.37. Doing so would allow us to

attempt more merges in the same amount of time during compilation, potentially

allowing us to discover more efficient configurations.

1

2 if (... and x != 10 and ...) {
3 ...
4 }

(a)

1 bool tmp = (x != 10);
2 if (... and tmp == true and ...)

{
3 ...
4 }

(b)
Figure 5.37: Precomputing Atoms: (a) shows a program that involves an if

statement with a negative atom. (b) shows how that atom could be turned into a
positive atom using precomputation.

Doing this naïvely incurs a cost, unfortunately; the precomputation takes up a

stage, which is a high price to pay. We may be able to avoid this cost sometimes,

however. It may be the case that there is a “free” stage in which the variable is unused

195

before the comparison; in this case, adding a precomputation in that stage would not

increase the total number of stages. Alternatively, the Tofino provides a special kind

of gateway table, which can compute certain types of comparison without taking a

stage. Determining which, if any, of these options applies to a given negative atom is

not trivial, but is certainly possible with a sufficiently sophisticated analysis.

5.7.3 Comparison to the Tofino Compiler

A unique feature of the Lucid compiler is it not only generates P4 code, but it spe-

cializes that code for the Tofino. To do so, it takes on some of the compilation burden

that is normally handled by the Tofino compiler. In particular, by transforming Lu-

cid programs into a series of match statements, then scheduling and merging them,

the Lucid compiler is providing the Tofino compiler with a much easier allocation

problem.

Indeed, prior versions of the Lucid compiler did not have these transformations,

and were much less successful. The first iteration did not translate if statements to

matches, instead using ALUs to compute the if conditions. However, we found that

the hardware constraints of ifs on the Tofino were extreme and caused programs to

take far too many stages.

The next iteration translated if statements to match statements, but did not

merge or schedule them. In this case, we found that the Tofino compiler had immense

difficulty compiling even moderate-complexity Lucid programs, such as the stateful

firewall. As a rule of thumb, we found that layout would typically begin to take very

long amounts of time and/or fail outright once programs had around 10 arrays and

4-5 P4 if statements. It was only once we began scheduling the tables ourselves, and

merging them when possible, that we were able to compile more sophisticated Lucid

programs.

196

Tofino Layout Algorithm It is clear that the Lucid scheduling algorithm works

on more complex programs than the one the Tofino uses. Unfortunately, the Tofino

compiler is proprietary, so we cannot directly compare our algorithm to theirs. How-

ever, we can compare to the algorithms laid out in Jose et al. [42], which evaluates

two types of algorithm for compiling programs to programmable switch hardware like

the Tofino: greedy, and Integer Linear Programming (ILP). In general, they found

that ILP-based algorithms produced more optimal results (e.g. fewer stages), but

took significantly longer than greedy algorithms like ours.

Given our observed behavior that the Tofino compiler begins to slow down rapidly

as programs get larger, it is plausible that it uses some sort of exponential search

algorithm like an ILP solver. It also considers more types of resource than the Lucid

compiler, contributing to the complexity of the problem. However, it is unlikely

that the compiler is merging tables the way Lucid does; in fact, we know of no

other dataplane language that does so, although there has been some work on P4

compilers that utilize table merging or similar program transformations [49, 33]. It

seems likely that the reason for our greater success is our ability to combine tables,

as well as potentially our ability to schedule the program using Lucid’s higher level

of abstraction.

5.8 Related Work

Synthesis techniques Other dataplane programming languages ship with their

own compilers, which use various techniques to fit their programs into the hardware.

The P4 compiler [14] uses a “standard” compiler design in which the program is itera-

tively transformed by a series of passes, until it is eventually passed to a target-specific

backend. The Domino compiler [70] breaks programs down into atomic transactions

that can be implemented in a single hardware operation. The Lyra compiler [31]

197

takes in a description of the network and automatically splits the program across

multiple devices. The P4All [36] compiler uses an Integer Linear Programming solver

to automatically allocate memory to data structures.

A common thread among existing compilers (with the notable exception of the

P4 compiler) is the use of of synthesis techniques to generate working or even optimal

code. P4All uses its ILP solver; Domino and Lyra both use SAT solvers to synthesize

their final layouts. However, their synthesis techniques are all-or-nothing – either they

find a working configuration, or compilation fails wholesale. This makes it difficult to

debug failed programs. In contrast, Lucid’s approach is closer to the one used by the

P4 compiler – a series of transformation passes culminating in target-specific code.

Jose et al. [42] examined the effectiveness of various generic compilation tech-

niques to reconfigurable pipelines like the Tofino. They found that greedy approaches

like Lucid’s were generally faster than synthesis-based ILP approaches, but that syn-

thesis unsurprisingly produced better final solutions for compiling programs.

VLIW The Tofino is an instance of a Very Long Instruction Word (VLIW) archi-

tecture [29]: each stage has multiple computation units (ALUs, sALUs, hash units,

etc), and each operation must be allocated to one of them. In particular, the Tofino

is an instance of a clustered VLIW architecture, in which registers (or PHVs, in

the case of Lucid) are associated with specific computation units. Compilation to

clustered VLIW architectures has been well-studied in the realm of traditional com-

puting [9, 25, 66, 88]. Unfortunately, there are some critical distinctions between the

traditional setting and the Tofino; in particular, most existing work assumes that it

is acceptable (though undesirable) to spill registers to memory. In Lucid, if we run

out of PHV space, the program is instead uncompilable. This necessitates different

approaches to try to ensure programs compile.

198

Table Merging The merging of tables is one of the most crucial parts of Lucid’s

algorithm, but it is done via a simple greedy algorithm. Such compression strategies

have been studied before. Smolka et al. [71] describes a compiler for NetKAT that

represents routing tables using Forwarding Decision Diagrams, a generalization of

Binary Decision Diagrams [16] specialized for networks. Use of this representation

can potentially reduce the amount of space required to represent a given ruleset.

Furthermore, Pous [61] shows how to use BDDs to check equivalence of expressions.

Recent work on Cetus [49] and Cat [33] has resulted in P4 compilers which uti-

lize table-merging strategies similar to Lucid’s. Cetus sometimes merges tables from

different stages into a single stage, using the same strategy as Lucid. Cat uses ta-

ble merging to combine nested if-else statements into a single flat table, analogous

to Lucid’s boolean elimination passes. A key difference between Lucid and related

work is that Lucid programs typically start with many extremely small tables (most

containing one statement each), while P4 programs start with fewer, larger tables

written by the user. This means that the Lucid compiler must combine tables more

aggressively than P4 compilers (since the total number of tables is limited), but also

that Lucid has more flexibility in how it merges them.

A related topic to table merging is the problem of compressing rules in routing

tables, or data structures more generally. This has been a topic of interest as the

internet grows ever larger [43], and has led to several papers describing possible com-

pression strategies [63, 64, 44]. Many of these techniques are not directly applicable,

as tables in Lucid programs can represent many more things than routing informa-

tion, but are nonetheless of interest as a way of possibly compressing the size of the

tables.

199

Chapter 6

Parasol: Optimizing Dataplane

Programs in Lucid

6.1 Dataplane Optimization

In comparison to P4, Lucid makes it much easier to write working dataplane applica-

tions and compile them to switches. However, tuning these applications for real-world

use is still a challenging task. There are numerous decisions that must be made while

writing a program – some relatively small, like a timeout for firewall entries, and

some large, like which data structure to use to store traffic measurements. Different

choices can result in wildly different performance1, and the first program written is

rarely the best one.

As a result, deploying dataplane programs can be a time-consuming and tedious

task, which typically involves iteratively compiling, deploying, and tweaking the pro-

gram until it both fits within the hardware and has acceptable performance. This

process can take days or even weeks, and is made all the more frustrating since each

step of the process can individually be time-consuming. A state-of-the-art P4 com-
1As measured by how well the program achieves its objectives, e.g. the accuracy of measurement

program, or the hit rate of a cache.

200

piler might take minutes, hours, or even multiple days to produce a result [37]. Even

prewritten programs are not immune, since they may need to be altered to fit on

hardware with different restrictions, or tuned to work in a network with a different

topology or traffic pattern.

To alleviate these problems, researchers have developed a variety of different pro-

gram synthesis systems aimed at programmable switches [70, 32, 36, 31, 83, 91].

These systems either manipulate existing programs to fit them onto switches, or lift

the level of abstraction at which the program is written, giving it enough “flex” to be

automatically fit into switches by optimizing the use of key resources such as memory,

ALUs, or pipeline stages.

As useful as they are, these systems only scratch the surface of what is possible.

Each of the above systems is limited in one or more of the following ways.

Limited objectives. Most systems to date focus on optimizing simple on-switch

resources, such as memory footprint, number of pipeline stages, or ALU usage. How-

ever, operators typically evaluate applications on far more sophisticated criteria than

just whether they happen to fit into the switch pipeline. Accuracy of measurements,

effectiveness relative to an idealized model, and bandwidth used are just a few other

ways to evaluate data-plane algorithms. Indeed, even the most memory-intensive

applications are typically developed to optimize some other criteria. For instance,

NetCache [41] – an in-network cache for key-value stores – uses several data struc-

tures, including a count-min sketch (to identify popular keys) and a multi-stage hash

table (to cache the values for popular keys). While optimizing memory layout of these

data structures is important, the high-level objective is actually to maximize cache

hit rate. No tool to date has the ability to specify objectives at such a high level of

abstraction.

201

Limited “program flex.” To give optimizers a chance to improve a program im-

plementation, they must be free to change that implementation – the more freedom

(i.e., the more “flex” in the program), the more opportunities an optimizer has to

make improvements. Standard optimizing compilers have very little freedom in this

regard; they must preserve the surface-level semantics of programs. A system like

P2GO [83] deviates from this requirement by cutting out program components that

are unnecessary for processing a particular traffic trace, but this carries some risk if

traffic not present in the trace shows up in the live network. Even if it does not,

P2GO has limited ability to make changes, because it utilizes only three operations:

it can merge tables, remove dependencies, or move processing to the control plane.

A system like P4All [36] or SketchGuide [91] adds a little more flexibility by

allowing data structures to be resized. Still, memory allocation is not the only thing

that affects performance: other crucial parameters include the rate at which active

probes are emitted in a telemetry application, the choice of data structures to use in

an in-network cache, the threshold at which to declare a heavy hitter, or the criterion

to use for failure detection. No tool to date allows users to write programs with so

much flex, let alone automatically optimize them.

Limited environmental input. The performance of a data-plane application is a

product of its environment. A program tailored to one workload may not perform well

if used in a different setting. As a result, systems like Chipmunk [32] and P4All [36]

are limited because they have no access to traffic traces. Even if it were possible to

express a property such as “optimize cache hit rate” in a system like P4All (which it is

not), it would not be possible to completely solve the optimization problem because

hit rate depends on the distribution of requests in the network, which P4All does

not consider. P2GO and SketchGuide do provide access to such data, but they have

neither the flex nor the range of objectives to exploit that information to its fullest

202

potential.

The fundamental difficulty of optimization is the tradeoff between expressibility

and complexity. The more flex a program has, the more difficult it is to optimize, as

the program can have any number of parameters that affect its performance, and it

can be nearly impossible to develop objective functions to capture every parameter

in a program. On the other hand, programs with little or no flex leave little or no

room for optimization in the first place, rendering an optimizer useless.

6.1.1 Parasol

In this chapter, we will discuss Parasol, a novel, general framework for data-plane-

program optimization that builds upon Lucid to overcome the limitations of earlier

frameworks. Parasol programmers write sketches [72] in Lucid, which are normal pro-

grams with several “holes”. These holes represent the parameters of the program; each

is an undefined value that will be filled in by the optimizer. Parameters in Parasol are

highly flexible – they can control just about any aspect of the implementation. This

might include memory layout, decision thresholds, measurement intervals, or even a

choice between data structures; in contrast, systems like P4All and SketchGuide are

limited to only optimizing memory layout.

The sketch is then passed to an optimizer, which uses an iterative search algo-

rithm to automatically optimize the parameters according to a user-defined objective.

The program sketch is simulated in the Lucid interpreter with a candidate set of pa-

rameter values, during which time the user’s objective function may take arbitrary

measurements of the network. Upon completion, the objective function computes a

score for those parameter settings, and the algorithm uses the past scores to choose

a new set of candidate values. This process repeats for a specified number of iter-

ations, after which the optimizer returns the highest-scoring parameter values that

203

successfully compile to the hardware.

Both parts of the objective function – measurements and score computation –

are written in Python, rather than the more limited languages of switch data planes.

Hence, users can express essentially unlimited optimization criteria – the main con-

straint is the fidelity of the simulation environment to reality. Furthermore, the

optimizer simulates the program’s behavior on a specific traffic trace, allowing the

optimizer to tailor the performance to a particular networking environment.

To summarize, Parasol is a new dataplane optimization framework with the fol-

lowing features.

• Flexible objectives: Parasol’s optimization algorithm can optimize for a wide

variety of high-level metrics such as hit rate or measurement accuracy.

• Flexible programs: The parameters of a Parasol program may control many

properties, including probe generation frequency, algorithmic choices, memory

layout, data-structure selection, or threshold values.

• Flexible environments: Parasol programmers may tailor their optimization

to particular network environments by providing representative traffic traces.

We have evaluated Parasol by developing a number of data-plane programs with

various parameters and objective functions. Our experiments found that the Parasol

optimizer completed an iteration in approximately eight minutes on average (with

an average trace size of two million packets), and all applications could be optimized

with a time budget of two hours. The solutions produced by the optimizer not

only complied with the resource constraints of the hardware, but were comparable in

performance to hand-optimized P4 code.

204

cache

request
handler

response
handler

key-value
map

access
counts

request

response

(hit)

request(miss)

response

(miss)

storeclient

response (miss)

Figure 6.1: Motivating example: an in-network cache.

Param Description

Cm Number of columns / hashes in multi-hash table (MHT).
Rm Number of rows (cells per hash) in multi-hash table.
Cc Number of columns / hashes in count-min sketch (CMS).
Rc Number of rows in CMS.
Tt Timeout threshold for cache.
Tr Replacement threshold.
P Use precision in place of MHT + CMS.

Figure 6.2: Parameters of the data-plane cache.

6.1.2 Attribution

The work on Parasol was spearheaded by Mary Hogan as an extension of her prior

work on dataplane optimization [36]. Other contributors were the author, David

Walker, John Sonchack, Jennifer Rexford, and Shir Landau-Feibish. The author’s

contributions were in designing and implementing the extensions to the Lucid lan-

guage and interpreter described in this chapter, as well as providing input to the

overall design of Parasol. The text of this chapter is adapted with minor modifica-

tions from a draft version of the Parasol paper [37].

205

6.2 An Illustrative Example

As in earlier chapters, before we describe Parasol in detail, we will provide a running

example to highlight its various components. Our example is a load-balancing cache,

inspired by NetCache [41], which a database operator might wish to deploy in their

network. The structure of the cache is illustrated in Figure 6.1. The cache reduces

load on database servers by directly responding to requests for the most popular keys,

and forwarding only cache misses to the servers.

The cache operates by storing key/value pairs in a hash table on a switch. When

a request arrives, the switch first checks to see if the key is in the table; if it is, the

switch simply retrieves the value and sends it back to the requester. Otherwise, the

switch forwards the request to the appropriate storage server. When the response

arrives, the switch forwards it to the client and optionally caches the entry.

To maximize efficiency, the cache should store values for the most popular keys.

Because popularity may change over time, the switch dynamically updates its cache

to remove less popular keys in favor of more popular ones. To enable this, the switch

tracks statistics about the popularity of keys not stored in the cache using a second

data structure: a compact, approximate counter (e.g., a count-min sketch (CMS)).

Parameters and performance. The high-level description of the cache algorithm

is quite simple, but to implement it, a programmer must make numerous low-level

decisions. How much memory should be allocated to the hash table vs. the counter?

When should we replace cached keys? How should we represent the counter – using

a CMS, or something like Precision2 [10]? Each of these questions corresponds to a

parameter of the program; Figure 6.2 provides a non-exhaustive list of the parameters

that an implementation might depend on.

These decisions are not simply details – they can have significant performance
2A hash table that probabilistically replaces cached keys upon collision, where more popular

items are less likely to be replaced.

206

implications. For example, a larger hash table can cache more keys at once, but

reduces the memory available for the approximate counter and, in turn, its accuracy.

A too-small timeout means that moderately popular keys will get frequently evicted

and re-added, while a too-large timeout can result in less popular keys staying in the

cache for far too long.

Unfortunately, predicting the behavioral effects of the parameters is difficult, be-

cause different parts of the program are competing for the extremely limited resources

provided by the switch. We can predict that allocating less memory to the approxi-

mate counter will reduce its accuracy, but perhaps the extra space for the cache itself

will outweigh that negative – or perhaps not. Trying to derive theoretical high-level

behavioral implications from low-level parameter values is an extremely difficult task.

Even then, the theoretical behavior will have to make assumptions about the envi-

ronment in which the program is run [26]. Even if the programmer goes through

the considerable effort of working out a closed-form objective function for a cache, it

typically only expresses worst-case or average-case performance; the actual rate may

be drastically different in practice [22].

In contrast, the desired behavior of a data-plane cache is easy to define – it should

maximize hit rate. This behavior is equally easy to measure, by simply monitoring

the switch in question and recording whether each incoming packet is a hit or a miss.

While it would be very difficult (likely impossible) to derive a closed-form equation

that relates the cache’s hit rate to its parameters (a necessary step for using ILP-based

optimization frameworks [36]), a simulation-based approach lets us simply observe the

cache’s behavior in practice.

Traffic dependence. There is another wrinkle: the hit rate of the cache does not

depend solely on the parameters, but also on the network. Specifically, the hit rate

depends on which keys are in the cache, which is determined not only by the size of

207

the data structures but also the choice of data structure in the first place (e.g. CMS

vs. Precision), the timeout parameter, and the traffic flowing through the network.

P4All [36], another framework that optimizes parameters of a program sketch,

is only able to model the first of these parameters (the size of the data structures).

As a result, the performance of the P4All program is limited by the programmer’s

hard-coded choices for the remaining parameters. Unfortunately, certain parameters

can have a large range of potential values (e.g., timeout could range from milliseconds

to seconds to even longer), and the subset of that range that performs well in practice

may be quite small, making it easy to pick suboptimal values.

Indeed, we found during testing that if the programmer chose values poorly, the

hit rate for a skewed workload could be as low as 56%, while our optimizer produced

a solution with a hit rate of 93%. For a uniform workload the minimum hit rate

plunged to 11%, while Parasol managed a hit rate of 28%3. Clearly, these additional

parameters do have substantial performance impacts in practice, meaning that the

ability to optimize them is important.

6.3 Extensions to Lucid

Parasol employs an extended version of Lucid as a sketching language that allows users

to write parameterized programs. We chose Lucid as the basis for Parasol for two

reasons. First, as a high-level language, it provides useful abstractions for representing

the numerous decisions programmers must make during implementation. Second,

Lucid’s two backends (the interpreter and P4 compiler) are ideal for Parasol’s use case.

The interpreter can simulate a program’s behavior without a lengthy compilation

process, while the compiler can ensure that parameter values are practical (i.e. they

actually compile to the hardware)
3One might worry that Parasol is achieving its better hit rates by overfitting to its input trace;

this is a concern for any framework that relies on a particular input. We discuss how to prevent
overfitting in §6.4.3.

208

To implement Parasol, we add three new features to Lucid. First, we add symbolic

values (à la P4All [36]) to represent the parameters of a program that should be

optimized. Second, we add a way to select between two different data structures

based on a symbolic value. Finally, we add a foreign function interface that allows

the user to take arbitrary measurements of the network during simulation. Figure

6.3 shows a pared-down example implementation of a dataplane cache that we use to

demonstrate these extensions. Parts of the program that do not relate to Parasol’s

extensions have been omitted, including the hash table storing the key/value pairs.

Symbolic Values. Symbolic values in Parasol function as placeholders that may

take on any value of the given type. Each is later replaced with a concrete value,

supplied during the compilation/optimization process. Once declared, a symbolic is

used in the same way as a compile-time constant.

The program in Figure 6.3 contains four symbolic values. The boolean useCms

determines if the program should use a CMS or Precision data structure, and the

integer trackerSize determines how much memory is allocated to that structure. If

a CMS is used, cmsThresh determines the threshold for adding new keys to the cache.

Finally, timeout determines when keys in the cache are considered expired.

Selecting Data Structures. In Figure 6.3, the CMS and Precision data structures

are each represented as a module containing a type definition, constructors, and func-

tions for deciding when to add a particular key to the cache. However, these modules

are not directly referenced in the rest of the program. Instead, the program refers to

the KeyTracker module, which is an alias for either CMS or Precision, depending on

the symbolic value useCms. When the program calls the function KeyTracker.create

to initialize the tracker, the appropriate constructor is called, and similarly for the

function KeyTracker.DecideIfAddingKey.

Parasol’s extension to the Lucid type checker makes sure CMS and Precision

209

1 symbolic bool useCms;
2 symbolic int trackerSize;
3 symbolic int cmsThresh;
4 symbolic int timeout;
5

6 module CMS : {
7 type t = ...;
8 fun t create(int size) {...}
9 fun int getCount(int key) {...}

10 fun bool decideIfAdding(int key)
11 { return (getCount(key) > cmsThresh); }
12 }
13

14 module Precision : {
15 type t = ...;
16 fun t create(int size) = {...}
17 fun int getCount(int key) {...}
18 fun bool decideIfAdding(int key) {...}
19 }
20

21 module KeyTracker = CMS if useCms else Precision;
22

23 global KeyTracker.t tracker = KeyTracker.create(memSize);
24

25 extern logHits(bool found);
26

27 event request(int key) {
28 int cachedKey = // Hash key to produce an index,
29 int cachedTime = // and return the value at that index
30 int cachedValue = // in the hashtable
31

32 bool found = (key == cachedKey);
33 int timeDiff = Sys.time() - cachedTime;
34 bool expired = timeDiff > timeout;
35

36 logHits(found);
37 if (found)
38 { generate response(cachedValue); }
39 else if (expired)
40 { AddKeyToCache(key); }
41 else {
42 bool add = KeyTracker.decideIfAdding(key);
43 if (add) { AddKeyToCache(key); }
44 }
45 }

Figure 6.3: A demonstrative implementation of a data-plane
cache in Parasol. Parts of the code not containing novel

elements have been truncated or omitted entirely.

210

implement the same interface, which allows the program to use KeyTracker safely

while remaining oblivious to the implementation-level differences between the two. If

the modules differed, the programmer could create wrapper modules to ensure they

present the same interface.

Foreign Function Interface. Our final extension lets a programmer instrument

their code with calls to external measurement functions that are executed by the

Parasol simulator, but removed from the final compiled program. In Figure 6.3,

the extern logHits is a function implemented in Python by the programmer, which

counts the number of cache hits and misses while the Parasol simulator is running.

Each time a cache lookup is performed, logHits is called to record whether the

lookup was a hit or a miss. After completing a simulation, the Parasol optimizer can

compute the hit rate simply by dividing the number of hits by the total number of

lookups.

Parasol does not impose any restrictions on what can be passed as a parameter to

extern functions, but permits only functions that have no return value. Since externs

cannot modify any Lucid program state, this means they can be safely elided during

compilation.

6.4 Optimizing Sketches

Once a sketch is written in Lucid, the next step is to optimize its parameter values. A

high-level overview of Parasol’s optimization framework is provided in Figure 6.4. The

programmer provides four inputs: (1) a program sketch, (2) a traffic trace, (3) one or

more measurement functions, and (4) an objective function. The Parasol optimizer

then finds effective values for the parameters of the sketch using an iterative search

algorithm. In each iteration, the search algorithm selects a concrete value for each

symbolic value. The resulting program is then simulated on the provided traffic trace

211

Program
sketch

Objective
function

Network
trace

Pick
concrete
values

Compute
instance

cost
Simulate
execution

Best concrete
program

Measurement
functions

Parasol
Optimizer

Figure 6.4: Overview of the Parasol optimization framework.

using the Lucid interpreter.

During simulation, measurements are taken via calls to the measurement func-

tions, using Parasol’s foreign function interface. At the end of simulation, the ob-

jective function uses these measurements to score the concrete program. The search

algorithm then uses the historical series of scores to select new concrete values for

the next iteration. This process repeats for a set time budget. At the end, the opti-

mizer returns the highest-ranked concrete program that successfully compiles to the

underlying hardware.

6.4.1 Measurements and Objectives

The objective function to be optimized is written in Python by the user, along with

any required extern functions for measurement. These measurements can target any

any part of the operating environment: the interpreter prints a trace of each event

it handles, allowing for large-scale measurements of network behavior, while extern

212

1 hits = 0
2 misses = 0
3 def logHits(found):
4 global hits, misses
5 if found: hits += 1
6 else : misses +=1
7 def objective():
8 return misses/(hits+misses)

Figure 6.5: Measurement and
objective functions for the data-plane

cache.

functions can be used to log information from within an event handler. Example

objective functions include the distribution of flows across paths in a load-balancing

application, the rate of collisions in a hash table, and the comparison of a CDF4

created from run-time measurements to a ground-truth CDF. The search algorithm

treats the objective function as a black box; any metric is acceptable.

Objective and measurement functions are often simple. For our data-plane cache,

the goal is to minimize the miss rate (that is, the ratio of cache misses to cache

accesses). The functions for measuring and computing miss rate can be defined in

just eight lines of Python (Figure 6.5).

The measurement function logHits is provided as an extern to the Parasol pro-

gram, and is called once per request, as shown in Figure 6.3. The objective function

is called by the optimization algorithm at the end of simulation. The global variables

hits and misses are maintained in a single instance of the Python interpreter, so

their values persist throughout the execution of the program.

Comparing with ideal implementations. A particularly useful type of measure-

ment is to compare the runtime behavior of a data structure against an idealized im-

plementation. As an example, a data-plane application can produce round-trip time

(RTT) samples by matching SYN packets with corresponding SYN-ACKs [24, 68].
4Cumulative Distribution Function.

213

When the switch sees a SYN packet, it stores its timestamp in memory, and can

compute the RTT when it sees the corresponding SYN-ACK packet. However, if

the data structure is full, the switch cannot store new SYN packets; as a result, the

application can only provide a portion of RTT measurements. During simulation, a

measurement function could maintain a Python data structure which does not run out

of memory, and compare its results to those of the Parasol structure—this provides

an easy-to-compute ground truth for how well the Parasol program could possibly

perform.

6.4.2 Search Algorithm

The final component of the Parasol optimizer is the search algorithm itself. The goal of

the search algorithm is to find parameter values that minimize the objective function.

However, the space of possible solutions can be intractably large. Worse, many of

these solutions may not even compile to hardware, even if they give good results in

the interpreter! Doing an exhaustive search is inefficient, and a naïve strategy may

never discover a compiling solution.

As a strawman solution, Parasol could require users to restrict the search space by

providing bounds on all variables. However, this will almost certainly include a large

number of non-compiling solutions, as even experts would have trouble determining

appropriate bounds. As an example, reasonable bounds on cache with a CMS as

the key tracker might be 1-5 cache tables and CMS rows, and while restricting cache

entries and CMS columns fit within a single stage. These bounds produce a solution

space of 4225 configurations, only 16% of which actually compiled to the switch during

testing.

Alternatively, Parasol could use a heuristic to exclude non-compiling solutions

before they are simulated, assigning them a maximum cost. While this avoids sim-

ulating configurations that do not compile, it also reduces the effectiveness of the

214

search strategies because non-compiling solutions do not give any indication of how

to vary their parameters to become compilable. One could imagine simulating the

configuration anyway, in the hopes that it will lead us to a compiling configuration,

but this is unlikely – programs using an impossible amount of memory, for example,

are likely to perform impossibly well.

In practice, we address this issue by splitting the search algorithm into two phases:

preprocessing and simulation. In the first phase, Parasol automatically prunes non-

compiling solutions from the search space, without requiring user-defined bounds.

In the second phase, Parasol searches the space of remaining solutions with a user-

configurable search algorithm.

Preprocessing In a nutshell, the goal of the preprocessing phase is to identify

solutions that are making maximal use of the resources on the switch, without using

so many that the program fails to compile. Solutions which do not fully exploit the

switch’s resources are likely to be outperformed by those that do. The resources we

consider are memory, pipeline stages, hash units, array accesses, and ALU usage.

During this phase we only consider symbolic values that affect resource allocation;

non-resource symbolics, such as timeouts or thresholds, are ignored.

We assume that the symbolics are monotonic with respect to resources – that is,

increasing the value of any symbolic value should not decrease the amount of resources

used. In our experience, this is a safe assumption; certainly, all of the applications

we evaluated satisfied this property.

We search for maximal-resource programs by determining upper bounds for each

resource symbolic. We begin by setting all symbolic values to either a default or user-

provided starting value. We then pick a symbolic, and determine an upper bound for

it by iteratively increasing only that symbolic’s value until we run out of resources5.
5As measured by a heuristic for whether compilation will succeed. These heuristics are discussed

in §6.4.3.

215

Thanks to monotonicity, the largest value that fits provides an upper bound for that

symbolic.

We then pick another symbolic and repeat this process; however, this time we find

one upper bound for each possible value of the first symbolic. We do the same for the

next symbolic, and the next, each time finding an upper bound for all valid combi-

nations of previously processed symbolics. When we finish, we will have enumerated

the entire useful search space (i.e., every compiling solution).

Default values The number of solutions we enumerate grows multiplicatively with

the number of parameters. To make preprocessing it more tractable, we provide rea-

sonable default values that, in our experience, allow the preprocessor to skip solutions

that obviously do not fully exploit the switch’s resources. In particular, values that

represent memory usage are initially set to the max memory available in a stage;

other symbolic values start at 4. The “magic value” of 4 was chosen empirically; we

found it generalized well to all of our applications, providing a significant reduction in

preprocessing time when compared to the smallest starting value of 1. For example,

the preprocessing time for a Precision-based cache improved from almost 2 hours to

only 25 minutes.

Simulation In the second phase of the search algorithm, we perform a configurable

search through the pruned space of solutions we created during the preprocessing

phase. We choose a configuration from that phase, select values for any non-resource

symbolics, and execute the resulting program in the Lucid interpreter. We then score

the configuration based on its output, and use a customizable search strategy to select

the next configuration to evaluate based the history of scores.

The Parasol optimizer is built to accommodate a variety of search algorithms.

We provide four built-in search functions for programmers to use – exhaustive search,

216

Nelder-Mead simplex method, simulated annealing, and Bayesian optimization6 –

but Parasol also supports any programmer-defined search of the solution space, and

is compatible with any optimization technique written in Python (e.g., stochastic

gradient descent, genetic algorithms, etc.). Programmers are free to choose or write

a search algorithm that provides their preferred balance between search time and

optimality of the final result. We evaluate the effectiveness of each built-in strategy

in §6.5.

6.4.3 Design Tradeoffs

Accelerating Preprocessing The preprocessing phase requires us to analyze the

resource usage of a program to determine if it will compile or not. The simplest way

to do this would be to actually compile the program; however, compilation can be

very slow (the Conquest [23] application took over 13 minutes), and most applications

require compiling many configurations (Conquest has a compiling search space of 25

configurations). Instead, we have tested a range of heuristics, with varying trade-offs

between performance and accuracy.

We consider three heuristics, all of which operate by emulating the scheduling

phase of the Lucid’s P4 compiler (§5.5). The primary distinction between the heuris-

tics is the types of resources they account for during scheduling. The simplest heuris-

tic, dataflow graph, only accounts for dependencies between actions (two actions

cannot be in the same stage if one depends on the output of the other). The greedy

layout heuristic additionally considers the layout of memory, hash units, array ac-

cesses, and ALU usage (for example, we cannot have multiple concurrent accesses to

the same array).

The partial compilation heuristic actually runs the Lucid compiler to produce a
6We chose these strategies because (with the exception of exhaustive) they use the history of

scores to efficiently navigate the search space. They also provide a range from simple strategies
(exhaustive, Nelder-Mead simplex) to more complex (Bayesian).

217

Heuristic Avg compile time Reduction
Dataflow graph 51s –
Greedy layout 51s 13%
Partial compilation 1.5min 13%
Full compilation 1.5min 16%

Figure 6.6: The performance of each preprocessing heuristic for a single
configuration, averaged over each evaluated application. The greedy layout provides

the best balance between performance and accuracy.

P4 program. This is much faster than a full compilation to the Tofino, and addition-

ally considers resource limits on physical tables in the pipeline (such as match column

width, maximum table size, and number of actions per stage). The only constraints

that we encountered that were not modeled by the Lucid compiler are packet header

vector (PHV) clustering constraints – each packet header or metadata variable in a

program must be placed into a specific PHV cluster, and each cluster has a fixed

number of ALUs in each pipeline stage. In our experience, it was possible to run

afoul of PHV constraints in sufficiently complicated programs, but these violations

were unaffected by choice of parameter values. Our preliminary implementations of

6/10 applications failed to compile with any configuration due to PHV constraints,

but once we adjusted the programs to accommodate for the constraints, we did not

run into PHV constraint violations for any configurations.

We summarize the performance of our heuristics in Figure 6.6. We list the average

compile time for each of our evaluated applications and the average reduction in

search space size, using the dataflow graph heuristic as the baseline. In practice,

we have found that the greedy layout heuristic provides the best tradeoff between

performance and accuracy. We cope with the potential inaccuracy of the heuristic by

including a safeguard to ensure that Parasol returns a compiling solution. Specifically,

we actually compile the highest-ranked configuration at the end of our optimization

loop. Should compilation fail, Parasol tries the next-highest-ranked, and so on, until

218

one compiles. If none of the tested solutions compile, the system will repeat the

optimization process, excluding solutions that did not compile.

We found that in practice, this rarely happens. After manually fixing any PHV

errors, the optimal solutions for nine out of the ten applications fit within the target

resources. Only one of the applications (CMS) resulted in an “optimal” configura-

tion that did not compile; however, the Parasol optimizer quickly found a compiling

solution that had similar performance.

Trace Representativity Since the Parasol optimization framework is simulation-

based, it relies on receiving a traffic trace that is representative of the target network’s

conditions. If the actual traffic in the network deviates from the patterns in the

trace, the performance of the application may not match the simulated performance.

However, because Parasol preserves the semantics of the data-plane program, it will

never produce unexpected or invalid behavior—its performance may simply be poorer

than anticipated.

To mitigate poor performance, programmers can use multiple traffic traces to

optimize their application, and use a weighted combination of performance on the

traces as the objective function. We show an example with our data-plane cache in

§6.5.4, by optimizing with workloads of different distributions. Alternatively, if the

distribution varies in a regular way (e.g. depending on time of day), the programmer

can use traces from peak times, where applications are likely most sensitive to poor

performance.

Beyond poor performance, an unrepresentative trace can leave an application

vulnerable to attacks when the training trace only contains benign traffic. To use

Parasol for tuning a security system, one needs traces containing the kinds of attacks

the application seeks to detect or prevent. Fortunately, Parasol users need not acquire

and label such traces themselves, as the network security community already goes to

219

great lengths to produce and share traces for the evaluation of their own security

systems [13]. These traces come from a variety of sources, including cyber defense

exercises [20] and security-oriented testbeds or simulators [80, 21].

6.5 Evaluation

Our evaluation of Parasol addresses its two components:

• Language: Can Parasol express a wide variety of parameters, objective func-

tions, and data-plane applications?

• Optimizer: How well do optimized Parasol programs perform, and how quickly

does Parasol find good parameters?

To answer these questions, we used Parasol to implement and optimize a suite of ten

data-plane applications (shown in Figure 6.7) with respect to representative traffic

traces. We chose applications that encompass a wide array of structures (including

commonly used structures like sketches and hash tables) and contain a diverse set

of parameters and objective functions. The code implementing Parasol is integrated

into the open-source Lucid repository on GitHub.7.

In the remainder of the section, we discuss each Parasol component individually,

and finish with an in-depth look at our data-plane caching example. We used three

types of traces in our evaluation – the University of Wisconsin Data Center Measure-

ment trace [11], a trace from core Internet routers [18], and synthetic traces for the

cache application. When evaluating applications, we split out our traces into train-

ing and testing data sets. To help mitigate the risk of overfitting, we optimize our

programs on the training data set, and then measure its performance on the testing

data.
7https://github.com/PrincetonUniversity/lucid

220

Parameter Classes
Application MA TH DS TM Objective (LoC)
Count-min sketch (CMS)

√
Mean estimate Error (20)

Multi-hash table (MHT)
√

Collision ratio (11)
Data plane cache (KV [75])

√ √ √ √
Miss rate (23)

RTT monitor (RTT [24])
√ √

Read success rate (118)
Unbiased RTT (Fridge [89])

√ √
Max percentile error (88)

Starflow [74]
√

Eviction ratio (17)
Conquest [23]

√
F-score (101)

load balancing (LB [78])
√ √

Error vs. optimal (38)
Precision [10]

√
Avg. error for top flows (28)

Stateful Firewall (SFW [73])
√ √ √

Packet overhead (70)

Figure 6.7: Applications optimized with Parasol, showing which classes of
parameters/objective functions were used. The four classes of parameters are

Memory Allocation (MA), Thesholds (TH), Data Structure Selection (DS), and
Timing (TM).

6.5.1 Language

To optimize a program using Parasol one must be able to do three things: write

the program in Lucid, represent the parameters of interest with symbolic values, and

write an appropriate objective function. Accordingly, to measure the expressivity of

Parasol, we implemented several applications with multiple classes of parameters and

diverse objectives. These programs are listed in Figure 6.7. Figure 6.8 shows the high-

level benefit of Parasol over the existing frameworks for application-level parameter

optimization, P4All [36] and SketchGuide [91]. While Parasol allowed us to fully

express the optimization goal of each application (both parameters and objective

function), P4All and SketchGuide could only express the full optimization goals of

2/10 applications. In the rest of this section, we discuss the ability of Parasol to

represent a diversity of both parameters (its “program flex”), and objective functions.

Program Flex. As Figure 6.7 shows, the Parasol programs we implemented had

four general classes of parameters: memory allocation, decision thresholds, choice of

data structure, and operation timing. These classes encompassed a diverse range of

221

Application Params Objective
Count-min sketch (CMS)

√ √

Multi-hash table (MHT)
√ √

Data plane cache (KV [75]) 7 7

RTT monitor (RTT [24]) 7 7

Unbiased RTT (Fridge [89]) 7
√

Starflow [74]
√

7

Conquest [23]
√

7

load balancing (LB [78]) 7 7

Precision [10]
√

7

Stateful Firewall (SFW [73]) 7 7

Figure 6.8: Applications optimized with Parasol, showing which parameters and
objective functions could be fully modeled by either P4All or SketchGuide.

parameters, including data structure size, time between packets, heavy hitter thresh-

old, and probability of an item being added to a structure. The generality of symbolic

values allowed Parasol to express all of them.

In comparison, P4All and SketchGuide could only support parameters from 5/10

of our implemented applications (CMS, MHT, Starflow, Conquest, Precision) as it

is impossible to express threshold, timing, or data structure choice parameters in

P4All or SketchGuide. Even for the examples that could potentially be optimized by

P4All or SketchGuide, it is easy to imagine slightly more complex variants that would

require incompatible parameters. For example, our CMS is a simple implementation

with no concept of time intervals – it never resets. Most applications, however, will

want to count over intervals, which requires a mechanism to periodically reset or age

counters, and a parameter that controls the length of the interval. The addition of

that one simple parameter makes the “deployable” variant of CMS incompatible with

P4All and SketchGuide.

Objective functions. The objective functions for our applications measured a wide

variety of high-level properties (Figure 6.7). These functions were generally short and

simple: on average, each function was approximately 50 lines of Python code. The

222

only requirement for Parasol objective functions is that they be expressible in Python.

They can take as input any, all, or none of the parameters of the application, along

with any measurements taken during the simulation.

In contrast, existing systems (P4All, SketchGuide) require programmers to supply

a closed-form objective function, which specifies exactly how the parameters relate

to the final cost. In practice, this can be very difficult, particularly for applications

that do not have theoretical guidelines or proven error bounds. Such applications are

common; even in research, many data-plane applications are evaluated empirically,

without finding provable theoretical guarantees [74, 23]. Furthermore, many systems

are composed of multiple components or data structures; writing a closed-form func-

tion for those systems requires not just understanding each component individually,

but codifying precisely how they interact.

In our evaluation, we considered an objective function to be expressible in P4All

or SketchGuide only if we could find a derivation in existing literature that included

all the parameters of the application, even if those parameters were not themselves

expressible in P4All or SketchGuide. We consider deriving a closed-form objective

function to be beyond the scope of an application developer (and also this thesis) as

it requires significant theoretical work.

With these criteria, we found that we were only able to express three out of our ten

objective functions in P4All or SketchGuide. Even so, there is a caveat: functions from

the literature typically quantify worst-case performance. These objective functions

oftentimes do not provide a realistic idea of how the application performs in practice,

and applications optimized for the worst case may not perform as well on practical

workloads. In contrast, Parasol objective functions measure actual performance on a

sample trace, and are therefore able to optimize for a much broader range of criteria,

even when a closed-form error function exists [91, 54, 22].

223

6.5.2 Optimization Quality

We evaluate the quality of Parasol’s solutions, compared to both hand-optimized

systems and an oracle optimizer (described below), and analyze the factors that

impact it. All experiments in this section use a two-hour time limit for the dynamic

search phase of the Parasol optimizer.

First, we compare the results of optimization with Parasol to optimization with

an “oracle”. Whereas the Parasol optimizer chooses its parameters via a search on its

training data, the oracle optimizer chooses parameters by exhaustively searching the

testing data set, i.e., it always chooses the optimal parameters.

Parasol found configurations that performed as well as the oracle for 6/10 applica-

tions (CMS, MHT, RTT, Starflow, Precision, and SFW). For 3/10 applications (KV,

Fridge, Conquest), the relative difference between the objective score of Parasol’s

and the oracle’s configuration (i.e., |Objectiveoracle−ObjectiveParasol|
Objectiveoracle

) was under 1.1%. For

the remaining application, the load balancer (LB), Parasol’s solution was, in relative

terms, 82% worse than the oracle. However, in absolute terms the difference was

small: the oracle’s configuration performed 1.7% worse than a perfect load balancer,

while Parasol’s configuration performed 3.1% worse than a perfect load balancer.

The Parasol Preprocessor

To measure the effect that Parasol’s preprocessor had on the solution quality, we

compared application performance when optimized with and without preprocessing,

using the same two-hour time budget for Parasol’s search phase. When the preproces-

sor was disabled, we bounded the search space by setting the same initial bounds for

all memory allocation variables — 20 register arrays and the max amount of SRAM

per stage for registers. These constitute reasonable bounds in our judgement – high

enough to include all compiling solutions for each application without unnecessarily

inflating the search space. Additionally, without the preprocessor, we assigned a pre-

224

determined max cost to solutions that did not compile (e.g., 100% cache miss rate),

to avoid delving into unusable areas of the search space.

As shown below, preprocessing consistently improved the performance of the final

solution, especially for applications that had a large search space or used multiple

structures that compete for resources (Starflow, KV, Conquest, SFW). In fact, when

the cache used CMS as the key tracker, Parasol consistently did not find a com-

piling solution in the time budget without preprocessing. The results for the most

sophisticated applications were:

• For Conquest, enabling the preprocessor improved recall from 75% to 87%.

• For Starflow, the preprocessor improved eviction ratio from 35% to 15%.

• For the stateful firewall, the preprocessor improved recirculation and retrans-

mission overhead from 16 kbps to 0.01 kbps.

Applications that had a small search space (CMS, MHT, Fridge, LB) did not

perform significantly better when preprocessing was enabled. However, even for such

applications, preprocessing still has an important benefit: it automatically bounds

the search space for the programmer, without the need for them to manually “guess”

reasonable bounds.

The Parasol Searcher

We found that the effectiveness of Parasol’s search phase depended on two factors:

the search strategy and the quality of the input trace. Parasol provides four built-in

strategies: exhaustive search, Bayesian, simulated annealing, and Nelder-Mead sim-

plex. We note that all of these strategies (except exhaustive) have hyperparameters

that control the learning process. We chose hyperparameter values manually such

that strategies produce solutions as good as or near the oracle solutions. We found

225

1 2 3
Tables

6

8

10

12

14

16
Lo

g
en

tri
es

 p
er

 ta
bl

e

0.0

0.2

0.4

0.6

0.8

Av
g

er
ro

r f
or

 to
p

12
8

flo
ws

Figure 6.9: A graphical representation of the search space for the Precision
application. A darker color represents a lower error. The optimal configuration

achieved an error of 0.01%, and nearly 40% of the solution space produced an error
of less than 1%.

that we could re-use these values for all applications without negatively affecting

solution quality.

Search strategy For some applications, the choice of search strategy does not

matter because a large portion of the compiling solution space is near-optimal. For

example, in the Precision application, over half of the search space after preprocess-

ing contained solutions that produced an average error of less than 10% (Figure 6.9),

compared to the optimal of less than 1%. In such cases, the search methods mostly

converged to the same configuration or to configurations that had very similar per-

formance.

226

For more complex applications, we found that no single search strategy domi-

nated. Because of this, we found that the best tactic was to run multiple search

strategies in parallel for each application, and choose the best result from among

them. Conversely, for applications with a small search space (after preprocessing),

we simply used exhaustive search. We consider a search space to be small if the

exhaustive search completed within the two-hour time budget.

Training trace. The effectiveness of Parasol’s search phase depended on the train-

ing trace’s size and representativeness.

Across all applications, we found that traces with approximately 1 million packets

were sufficiently large for Parasol to find high quality (i.e., near optimal) configura-

tions. Training trace size mattered more for some applications than others. In par-

ticular, when optimizing a hash table, the trace has to be large enough to cause hash

collisions; otherwise the differences between configurations are small and it is diffi-

cult (or impossible) for Parasol’s search algorithm to find the best one. For example,

the Starflow configurations found by the simplex and Bayesian strategies resulted in

similar eviction ratios (12% and 5%, respectively) in a small trace of 5000 packets,

but had very different errors (46%, 26%) with a larger trace of 5 million packets.

In addition to size, the trace’s representivity was also important. For some appli-

cations, the search phase was only effective when a trace contained certain network

events. For example, the Conquest data structure detects microbursts, and only

begins monitoring when one occurs. A trace with no microbursts would produce no

meaningful objective values, regardless of the configuration. On the other hand, some

applications were less sensitive to differences between training traces and target work-

loads. When testing Starflow, we found that Parasol was able to find near-optimal

solutions for a Wide-Area Network (WAN) using training traces from either a WAN

or a datacenter.

227

Comparison to hand-optimized configurations

We compared the performance of Parasol configurations to that of hand-tuned con-

figurations for our three most complex applications: Fridge, Conquest, and Starflow.

The hand-tuned configurations come from the applications’ original evaluations [89,

23, 74]. Our goal is to determine whether Parasol can essentially reproduce these

results, by finding configurations that perform comparably on a similar workload.

The case studies are described in detail in Appendix B.1. At a high level, Parasol

solutions performed reasonably close to the hand-optimized solutions for all three

applications.

• For Fridge, Parasol found a configuration that achieved a delay estimation error

of 18%, compared with the original evaluation’s result of 25%.

• For Conquest, Parasol found a configuration with a precision of 97% and recall

of 87%, compared to the original evaluation which found precision and recall >

90%, using the same trace.

• For Starflow, Parasol found a configuration with an eviction ratio of 15% in a

wide area workload, which is better than the 18% eviction ratio reported in the

original evaluation.

6.5.3 Optimizer Speed

The runtime of the Parasol optimizer (shown in Figure 6.10) is application-dependent,

and has two major components: preprocessing time and search time. Preprocessing

time scales with the complexity of the input program and number of parameters, and

took between 2 seconds and 1.5 hours. Search time scales primarily with the size

of the input trace, and was limited to 2 hours, though many applications required

228

App Preprocess Training Training Testing Testing
time size time size time

CMS 16s 500k 25s 10M 12min
MHT 15s 1M 47s 10M 7min
KV+Precision 25min 1M 6min 5M 25min
KV+CMS 2hrs 1M 2min 5M 7min
RTT 23s 1M 1min 3M 3min
Fridge 3s 1M 56s 3M 2min
Starflow 1.5hr 900k 1min 5M 27min
Conquest 15s 10M 9min 10M 10min
LB 2s 500k 16s 3M 2min
Precision 32min 1M 6min 18M 1.7hrs
SFW 30s 4M 3min 11M 7min

Figure 6.10: Runtime of Parasol components per application. Preprocess time is the
total time to preprocess the program using the greedy layout heuristic.
Testing/Training size number of packets in the respective trace, and

Testing/Training time the average time to simulate the trace once for an application.

less than that. A single iteration of the training trace took between 16 seconds to 9

minutes, depending on application.

Overall, the Parasol optimizer took no more than 3.5 hours to find near-optimal

settings for any of our applications. This compares favorably to compiling, testing,

and tuning applications by hand: just compiling one configuration of a program to

a reconfigurable architecture like the Tofino can take hours [32] for both research or

industrial compilers, because it is a fundamentally hard task [79].

As mentioned above, we found that three main factors influenced the overall

runtime: application complexity, training set size, and search strategy.

Application complexity. The preprocessing time depends on the complexity of

the program, both in terms of length and number of parameters. Programs with more

parameters (e.g. Starflow) took longer than programs with few parameters (e.g. LB).

Figure 6.10 lists the total preprocessing time for each application.

Complex programs also take longer to simulate. The CMS simulation took about

229

a minute for a 1 million packet trace, while a trace of the same size with Precision took

three minutes. Precision is more complex because it contains logic for recirculating

packets, while the CMS does not recirculate packets. The recirculation not only adds

complexity to Precision, it also requires the program to process more packets, as each

recirculation creates a new packet that must be processed.

Training set size. The runtime of Parasol’s search phase increases roughly linearly

with the size of the input training trace, because the search algorithm executes the

trace once for each candidate configuration. Reducing the size of the provided trace

can speed up optimization, but many applications require large traces. For example,

evaluating the performance of a program that measures heavy hitters (e.g., Precision)

requires enough traffic that the trace contains heavy flows.

Search strategy. Search strategies took different amounts of time to converge,

depending on the application. As a point of comparison, we evaluated the load

balancing and Starflow applications by tracking the best evaluated configuration after

each iteration.

For the load balancer, all three methods found similarly performing configurations,

but the overall search time was much different: Bayesian search took approximately

19 minutes, while simulated annealing and simplex search took only 2 minutes. For

Starflow, the Bayesian and simulated annealing strategies reached configurations with

similar performance (in 13 and 10 minutes, respectively) while simplex did not find a

configuration that produced the best collision rate within the time budget. Overall,

there is no clear “best search strategy” that works across applications.

6.5.4 Case Study: Data-plane Caching

To better understand how Parasol handles workload dependence and how the dis-

tribution affects the performance of different structures, we provide a more detailed

230

look at our original example, the cache application. We optimize the cache for three

different workloads: skewed Zipfian (top 10 keys had 58% of requests), less skewed

Zipfian (top 10 keys had 15% of requests), and uniform (top 10 keys had .06% of

requests). Training traces contained 1 million requests, and test traces contained 5

million requests. We limit the cache size to 10K entries.

We first compare a cache with a CMS key tracker (NetCache [41]) to one using

a Precision key tracker. The skewness of the workload significantly impacted cache

performance. For the skewed trace, the Precision cache slightly outperformed CMS

(7% vs. 10% miss rate, respectively). For the less skewed trace, Precision again

slightly outperformed CMS (64% vs. 69% miss rate, respectively). However, they

achieved the same miss rate for the uniform distribution (73% miss rate). The uniform

distribution puts more pressure on the key tracker because there are more unique keys,

causing worse performance than the skewed workload.

Both the Precision and CMS key trackers are complex applications that require

recirculation to insert keys. As an alternative, we implemented a single-stage hash

table as a cache, with no key tracker. The hash table always evicts keys on collisions,

and thus does not require recirculation. For skewed and uniform workloads, the

hash table performed similarly to Precision and CMS (10% skew, 73% uniform miss

rate). Given that more complex structures provide marginal benefit, the hash version

might be preferred for these workloads because of its simplicity. However, for the

less skewed trace, the performance of the hash cache deviated more noticeably (70%

miss rate). For this distribution, the added complexity of Precision provides a more

notable improvement.

Even though the hash table had similar performance to CMS as a key tracker,

CMS has an important benefit: the CMS only evicts items when requests for an

uncached key reaches a threshold, whereas the hash table will always replace on

collision. In other words, the items stored in the cache are more rapidly changing in

231

the hash table.

Overfitting To mitigate overfitting, we also optimized our cache using a combina-

tion of the three traces. Our objective function was the average of the miss rates for

each trace. The layouts chosen by Parasol for the Precision and hash versions were

the same as when training with each workload individually, with Precision providing

the lowest miss rate. The layouts chosen by Parasol for the CMS key tracker differed

when trained on all three distributions. They performed slightly worse on each dis-

tribution individually — achieving miss rates that were approximately 1% worse for

each distribution.

Parasol has the flexibility to express arbitrary programs with arbitrary parameters,

that can be optimized with any objective, for any workload. With Parasol, we can

directly compare different caching structures, for multiple traffic distributions, by

simply tweaking a boolean value. In doing so, we found that the structure used in

literature (CMS), is not always the best structure to track keys in a data-plane cache.

Parasol is able to make this process easy because it lifts the burden of reasoning

about how parameter choices can affect performance off of the programmer, greatly

simplifying the development process for data-plane applications.

6.6 Related Work

Researchers have developed a number of programming and synthesis tools to more

easily write data-plane programs. Domino [70], Chipmunk [32], Lyra [31], and O4 [4]

provide new, high-level languages for expressing data-plane programs, each with ab-

stractions and a compiler targeting one or more architectures. These compilers include

optimizations or synthesis techniques to ensure that programs compile. However, if

a program cannot fit on a target, the program will not compile. They also do not

232

provide environment-specific optimizations, as the compiler does not have access to

traffic information.

There also exist tools for optimizing prewritten data-plane programs. P2GO [83]

uses a traffic trace to minimize the resources used by a P4 program by reducing

dependencies that do not appear in practice, shrinking tables, and offloading parts of

the program to a controller. Cetus [49] uses static analysis to eliminate dependencies

between tables and to merge tables. Although P2GO and Cetus can fit programs

into limited resources, they either do not provide environment optimizations or risk

changing program semantics.

A third type of tool optimizes by leveraging user domain knowledge. P5 [3] uses

a high-level description of the network’s policy to remove spurious dependencies and

unused features. P4All [36] and SketchGuide [91] allow users to declare flexibly sized

structures and optimize them with a user-provided objective function. By taking

policy into account, these tools can provide more detailed optimizations than would

otherwise be possible. However, they ask a lot of their users; P5 requires a high-

level policy description, and P4All and SketchGuide require a closed-form objective

function.

An area of work related to the implementation of Parasol’s optimizer is network

simulation. Network simulators are designed for many objectives, including high

fidelity [65], interactive operation [48], automatic traffic generation [87], and scalable

performance [82]. In general, all of these tools complement Parasol. Future work on

Parasol will likely involve integrating these tools to improve the capabilities, fidelity,

and performance of Parasol’s simulator.

233

Chapter 7

Conclusion

Modern programmable networking hardware provides network operators and aca-

demics with unprecedented ability to control the behavior of their networks. However,

simply having the hardware is not enough: operators must also be able to actually

write the programs they care about. Writing sophisticated programs with modern

tools is an arduous task; to compensate, this thesis has introduced the Lucid language

as an easy-to-use, correct-by-construction dataplane programming language.

In contrast to existing languages, Lucid provides a high-level event-based view of

the network. Different logical threads of control are naturally represented as different

events; users do not need to worry about their interaction in the hardware, since the

Lucid compiler interleaves them automatically. The abstraction of events spares users

from the burden of manually configuring their hardware for each possible execution

path.

In addition to its simple programming model, Lucid makes it easy to write correct

code by providing simple, high-level guidelines for what correct code should look like.

These guidelines are automatically enforced by the type system and other syntactic

checks, providing users with useful feedback when they are violated.

The Lucid language has proven itself to be not only a good way of expressing

234

programs, but also an excellent substrate for compiler passes. The Lucid compiler

breaks down programs into their atomic components, then incrementally merges them

while computing a layout on the Tofino. Doing so allows users to write substantially

more sophisticated programs than they could relying on the Tofino compiler alone.

Although the compiler operates using greedy algorithms, it has a very high success

rate of fitting programs into the available hardware resources.

Finally, Lucid can be used for more than simply writing programs. The Parasol

framework provides a way to optimize the high-level behavior of arbitrary Lucid

programs, with unprecedented flexibility in the types of objectives and the parts of

the program that can be optimized.

Lucid has already proven itself an easy-to-use and flexible substrate for data-

plane programming. Many of its ideas, such as its pipeline type system, are reusable

and might be applied to other languages, or even other domains in the future. Fur-

thermore, although Lucid is currently bound to the Tofino, we hope to extend its

capabilities to other targets in the future, such as SmartNICs or EBPF. With Lucid

already in use for multiple research projects, we hope that in the future it will be a

staple of network programming for academics and network operators alike.

235

Appendix A

Pipeline Types

A.1 Operational Semantics
Pair-1

M, z, e1 → M ′, z′, e′1

M, z, (e1, e2) → M ′, z′, (e′1, e2)

Pair-2

M, z, (v1, e2) → M ′, z′, (v1, e
′
2)

Fst-1

M, z, e → M ′, z′, e′

M, z, fst e → M ′, z′, fst e′

Fst-2

M, z, fst (v1, v2) → M ′, z′, v1

Snd-1

M, z, e → M ′, z′, e′

M, z, snd e → M ′, z′, snd e′

Snd-2

M, z, snd (v1, v2) → M ′, z′, v2

Let-1

M, z, e1 → M ′, z′, e′1

M, z, let id = e1 in e2 → M ′, z′, let id = e′1 in e2

Let-2

M, z, let id = v in e → M, z, e[v/id]

236

Deref-1

M, z, e → M ′, z′, e′

M, z, !e → M ′, z′, !e′

Deref-2

z ≤ ze

M, z, !addr(ze) → M,S(ze),M [ze]

Update-1

M, z, e1 → M ′, z′, e′1

M, z, e1 := e2 → M ′, z′, e′1 := e2

Update-2

M, z, e → M ′, z′, e′

M, z, v := e → M ′, z′, v := e′

Update-3

z ≤ ze

M, z, addr(ze) := v → M [ze := v], S(ze), ()

If-1

M, z, e1 → M ′, z′, e′1

M, z, if e1 then e2 else e3 → M ′, z′, if e′1 then e2 else e3

If-true

M, z, if true then e2 else e3 → M, z, e2

If-false

M, z, if false then e2 else e3 → M, z, e3

Vector

M, z, e0 → M ′, z′, e′0

M, z, vector(v0, . . . , vn, e0, . . . , em) → M ′, z′, vector(v0, . . . , vn, e′0, . . . , em)

Index-1

M, z, e → M ′, z′, e′

M, z, e[n] → M ′, z′, e′[n]

Index-2

n ≤ m

M, z, vector(v0, . . . , vm)[n] → M, z, vn

237

Loop

M, z, for b < n do e → M, z, e[0/b]; ...; e[n− 1/b]; ()

Comp

M, z, [e for b < n] → M, z, vector(e[0/b], . . . , e[n− 1/b])

App-1

M, z, e1 → M ′, z′, e′1

M, z, e1 [k, ℓ] e2 → M ′, z′, e′1 [k, ℓ] e2

App-2

M, z, e2 → M ′, z′, e′2

M, z, v1 [k, ℓ] e2 → M ′, z′, v1 [k, ℓ] e′2

App-3

v1 = fun [κ, α] (id : τ, ℓ) → ebody

M, z, v1 [k, ℓ] v2 → M, z, ebody[v2/id][ℓ/α][k/κ]

A.2 Well-formedness conditions

A.2.1 Size rules

∆,K ⊢ n

κ ∈ ∆

∆,K ⊢ κ

b ∈ Dom(K)

∆,K ⊢ b

A.2.2 Location rules

∆,K ⊢ 0

α ∈ ∆

∆,K ⊢ α

∆,K ⊢ ℓ

∆,K ⊢ S(ℓ)

∆,K ⊢ ℓ

∆,K ⊢ ℓ.0

∆,K ⊢ ℓ b ∈ Dom(K)

∆,K ⊢ ℓ.b

238

A.2.3 Constraint rules

∆,K ⊢ true

∆,K ⊢ ℓ1 ∆,K ⊢ ℓ2

∆,K ⊢ ℓ1 ≤ ℓ2

∆,K ⊢ C1 ∆,K ⊢ C2

∆,K ⊢ C1 ∧ C2

A.2.4 Type rules

∆,K ⊢ Unit ∆,K ⊢ Bool ∆,K ⊢ addr(T)

∆,K ⊢ t1 ∆,K ⊢ t2

∆,K ⊢ (t1, t2)

∆,K ⊢ t ∆,K ⊢ k

∆,K ⊢ vector(t, k)

∆,K ⊢ t ∆,K ⊢ ℓ

∆,K ⊢ t⟨ℓ⟩

∆′ = ∆ ∪ κ ∪ α ∆′,K ⊢ Cf ∆′,K ⊢ τin ∆′,K ⊢ ℓin ∆′,K ⊢ τout

∆′,K ⊢ ℓout Cf ⇒ ℓin ≤ ℓout ∀ℓ1, ℓ2 ∈ Cf .Cf ⇒ ℓin ≤ ℓ1 ≤ ℓ2 ≤ ℓout

∆,K ⊢ fun ∀κ, α.Cf ⇒ (τin, ℓin) → (τout, ℓout)

A.2.5 Environment rules

Definition A global declaration G is well-formed, written ⊢ G, if for any two concrete

locations z1, z2 where z1 is a strict prefix of z2, at most one of G[z1],G[z2] exists.

∆ ⊢ ∅

∆ ⊢ K b /∈ Dom(K) ∆,K ⊢ k

∆ ⊢ K, b ≤ k

∆,K ⊢ Γ x /∈ Dom(Γ) ∆,K ⊢ τ

∆ ⊢ Γ, x := τ

⊢ G ∆ ⊢ K ∆,K ⊢ Γ

⊢ (G,∆,K,Γ)

239

A.2.6 Typing Judgement

These rules are identical to the ones in §4.2; we repeat them here purely for conve-

nience.

Unit

Ω ⊢ ℓ′

Ω, ℓ ⊢ () : Unit⟨ℓ′⟩, ℓ, true

True

Ω ⊢ ℓ′

Ω, ℓ ⊢ true : Bool⟨ℓ′⟩, ℓ, true

False

Ω ⊢ ℓ′

Ω, ℓ ⊢ false : Bool⟨ℓ′⟩, ℓ, true

Addr

Ω.G[z] = T

Ω, ℓ ⊢ addr(z) : addr(T)⟨z⟩, ℓ, true

Var

Ω.Γ[id] = τ

Ω, ℓ ⊢ id : τ, ℓ, true

Pair

Ω, ℓ0 ⊢ e1 : t1⟨ℓ.0⟩, ℓ1, C1 Ω, ℓ1 ⊢ e2 : t2⟨ℓ.1⟩, ℓ2, C2

Ω, ℓ0 ⊢ (e1, e2) : (t1, t2)⟨ℓ⟩, ℓ2, C1 ∧ C2

Fst

Ω, ℓ0 ⊢ e : (t1, t2)⟨ℓ⟩, ℓ1, C1

Ω, ℓ0 ⊢ fst e : t1⟨ℓ.0⟩, ℓ1, C1

Snd

Ω, ℓ0 ⊢ e : (t1, t2)⟨ℓ⟩, ℓ1, C1

Ω, ℓ0 ⊢ snd e : t2⟨ℓ.1⟩, ℓ1, C1

Let

Ω, ℓ0 ⊢ e1 : τ1, ℓ1, C1 Ω.(Γ[id := τ1]), ℓ1 ⊢ e2 : τ2, ℓ2, C2

Ω, ℓ0 ⊢ let id = e1 in e2 : τ2, ℓ2, C1 ∧ C2

240

If-left

Ω, ℓ0 ⊢ e1 : Bool⟨ℓ⟩, ℓ1, C1

Ω, ℓ1 ⊢ e2 : τ, ℓ2, C2 Ω, ℓ1 ⊢ e3 : τ, ℓ3, C3 ℓ2 ≤ ℓ3

Ω, ℓ0 ⊢ if e1 then e2 else e3 : τ, ℓ3, C1 ∧ C2 ∧ C3

If-right

Ω, ℓ0 ⊢ e1 : Bool⟨ℓ⟩, ℓ1, C1

Ω, ℓ1 ⊢ e2 : τ, ℓ2, C2 Ω, ℓ1 ⊢ e3 : τ, ℓ3, C3 ℓ3 ≤ ℓ2

Ω, ℓ0 ⊢ if e1 then e2 else e3 : τ, ℓ2, C1 ∧ C2 ∧ C3

Abs

(G,∆,K,Γ) = Ω ∆′ = Ω.∆ ∪ κ ∪ α

∆′,K ⊢ τin, ℓin (G,∆′,K,Γ[id := τin]), ℓin ⊢ e : τout, ℓout, C

tf = ∀κ, α.C ⇒ (τin, ℓin) → (τout, ℓout) Ω ⊢ ℓ′ Ω ⊢ tf

Ω, ℓ ⊢ fun [κ, α](id : τin, ℓin) → e : tf⟨ℓ′⟩, ℓ, true

App

Ω ⊢ k, ℓ Ω, ℓ0 ⊢ e1 : tf⟨ℓ′⟩, ℓ1, C1

tf = ∀κ, α.Cf ⇒ (τin, ℓin) → (τout, ℓout) Ω, ℓ1 ⊢ e2 : τin[ℓ/α][k/κ], ℓ2, C2

Ω, ℓ0 ⊢ e1 [k, ℓ] e2 : τout[ℓ/α][k/κ], ℓout[ℓ/α][k/κ], C1 ∧ C2 ∧ Cf [ℓ/α][k/κ] ∧ ℓ2 ≤ ℓin[ℓ/α][k/κ]

Deref

Ω, ℓ0 ⊢ e : addr(T)⟨ℓ2⟩, ℓ1, C Ω ⊢ ℓ′

Ω, ℓ0 ⊢!e : T ⟨ℓ′⟩, S(ℓ2), C ∧ ℓ1 ≤ ℓ2

Update

Ω, ℓ0 ⊢ e1 : addr(T)⟨ℓ3⟩, ℓ1, C1 Ω, ℓ1 ⊢ e2 : T ⟨ℓ⟩, ℓ2, C2 Ω ⊢ ℓ′

Ω, ℓ0 ⊢ e1 := e2 : Unit⟨ℓ′⟩, S(ℓ3), C1 ∧ C2 ∧ ℓ2 ≤ ℓ3

241

Vector

Ω, ℓ0 ⊢ e1 : t⟨ℓv.0⟩, ℓ1, C1 · · · Ω, ℓn−1 ⊢ en : t⟨ℓv.(n− 1)⟩, ℓn, Cn

Ω, ℓ0 ⊢ vector(e1, . . . , en) : vector(t, n)⟨ℓv⟩, ℓn, C1 ∧ · · · ∧ Cn

Index-const

Ω, ℓ0 ⊢ e : vector(t, n′)⟨ℓ⟩, ℓ1, C n < n′

Ω, ℓ0 ⊢ e[n] : t⟨ℓ.n⟩, ℓ1, C

Index-var

Ω, ℓ0 ⊢ e : vector(t, k)⟨ℓ⟩, ℓ1, C Ω.K[b] = k

Ω, ℓ0 ⊢ e[b] : t⟨ℓ.b⟩, ℓ1, C

Loop

(G,∆,K,Γ) = Ω

αstart ̸∈ ∆ Ω ⊢ k G,∆, (K, b < k),Γ, αstart ⊢ e : τ, ℓend, C

nri(C, b) C0 = C[ℓinit/αstart][0/b] ℓ1 = ℓend[ℓinit/αstart][0/b]

C1 = C[ℓ1/αstart][1/b] ℓ2 = ℓend[ℓinit/αstart][1/b] C2 = C[ℓ2/αstart][2/b]

Ω, ℓinit ⊢ for b < k do e : Unit⟨ℓ⟩, round(ℓend[ℓinit/αstart], b), C0 ∧ C1 ∧ C2

Comp

(G,∆,K,Γ) = Ω

αstart ̸∈ ∆ Ω ⊢ k G,∆, (K, b < k),Γ, αstart ⊢ e : t⟨ℓv.b⟩, ℓend, C

nri(C, b) C0 = C[ℓinit/αstart][0/b] ℓ1 = ℓend[ℓinit/αstart][0/b]

C1 = C[ℓ1/αstart][1/b] ℓ2 = ℓend[ℓinit/αstart][1/b] C2 = C[ℓ2/αstart][2/b]

Ω, ℓinit ⊢ [e for b < k] : vector(t, k)⟨ℓv⟩, round(ℓend[ℓinit/αstart], b), C0 ∧ C1 ∧ C2

242

A.3 Properties of Pipe

In this section, we show a variety of properties about Pipe’s type system, which we

use to prove soundness in appendix A.4. Rather than write out the entire proof

of each, we highlight the interesting cases – cases which do not appear are either

straightforward or analogous to one of the written cases.

A.3.1 Value Lemmas

These are all proved by inversion or induction on the typing relation.

Lemma (Value Lemma): If Ω, ℓ ⊢ v : τ, ℓ′, C, then

• (V-1) ℓ = ℓ′ and C = true, and

• (V-2) For all ℓ, Ω, ℓ ⊢ v : τ, ℓ, C.

Lemma (Canonical Forms): If Σ, ℓ,⊢ v : t⟨ℓv⟩, ℓ′, C, then

• If t = addr(T) then ℓv is a concrete location z, and v = addr(z), and Σ.G[z] =

T .

• If t = Bool then either v = true or v = false.

• If t = (t0, t1) then v = (v0, v1), and Σ, ℓ ⊢ v0 : t0⟨ℓv.0⟩, ℓ′, true and Σ, ℓ ⊢ v1 :

t1⟨ℓv.1⟩, ℓ′, true

• If t = vector(t, k) then k ∈ N, v = vector(v0, . . . , vk−1), and for all 0 ≤ i < k,

Σ, ℓ ⊢ vi : t⟨ℓv.i⟩, ℓ′, true

• If t = ∀κ, α.Cf ⇒ (τin, ℓin) → (τout, ℓout), then v = fun [κ, α] (id : τin, ℓin) → e

and {κ} ∪ {α} ⊢ τin, ℓin and G, {κ} ∪ {α}, {id := τin}, ∅, ℓin ⊢ e : τout, ℓout, Cf .

• If t = Unit then v = ()

243

A.3.2 Minor Lemmas

Lemma (Rounding Lemma): For all ℓ, b:

• b /∈ round(ℓ, b), and

• ℓ ≤ round(ℓ, b), and

• for all k, ℓ[k/b] ≤ round(ℓ, b)

• if ∆, (K, b ≤ k) ⊢ ℓ then ∆,K ⊢ round(ℓ, b)

Proof: The fact that b /∈ round(ℓ, b) is immediate, since it is required for drop to

terminate. If b /∈ ℓ then ℓ = round(ℓ, b). Otherwise, note that drop returns a prefix

of ℓ, so adding 1 to it results in something strictly larger than ℓ. As a result, we have

ℓ[k/b] ≤ round(ℓ, b)[k/b] = round(ℓ, b). Finally, since drop returns a prefix of ℓ that

does not include b, if if ∆, (K, b ≤ k) ⊢ ℓ then we know that ∆,K ⊢ round(ℓ, b)

Lemma (C.2.1): If i ≤ j then for all ℓ, ℓ[i/b] ≤ ℓ[j/b].

Proof: ℓ[i/b] and ℓ[j/b] are identical in all entries that do not involve b, and in those

entries we can prove that ℓ[j/b] is no smaller.

A.3.3 Well-formedness lemmas

Lemma (Well-formed outputs): If ⊢ Ω and Ω ⊢ ℓstart, and Ω, ℓstart ⊢ e : τ, ℓend, C,

then Ω ⊢ τ, ℓend, C

Rather than prove this lemma directly, we will first prove a slightly stronger lemma

(the wellformed-helper lemma), which has useful corollaries. Once that is done, this

lemma is immediate by combining it with the additional premise that Ω ⊢ ℓstart.

244

Lemma (Wellformed-helper): If ⊢ Ω and Ω, ℓstart ⊢ e : τ, ℓend, C, then Ω ⊢ τ and

either Ω ⊢ ℓend or ℓend = ℓstart. Furthermore, for each constraint x ≤ y in C, Ω ⊢ y

and either Ω ⊢ x or x = ℓstart.

Proof: Structural induction on the typing judgement.

Case UNIT: We have Ω ⊢ ℓ′, so Ω ⊢ Unit⟨ℓ′⟩. The rest is immediate.

Case PAIR: By induction, either Ω ⊢ ℓ1 or ℓ1 = ℓ0. Similarly, either Ω ⊢ ℓ2 or ℓ1 = ℓ0.

We have three possibilities: either (1) Ω ⊢ ℓ2 or (2) ℓ2 = ℓ1 = ℓ0 or (3) ℓ2 = ℓ1 and

Ω ⊢ ℓ1 (in which case Ω ⊢ ℓ2). The fact that Ω ⊢ t1⟨ℓ.0⟩, t2⟨ℓ.1⟩ is immediate by

induction.

Finally, by induction we know that our requirements are met for C1. For C2, we

know by induction that for each constraint x ≤ y ∈ C2, Ω ⊢ y, and either Ω ⊢ x or

x = ℓ1. But in the latter case, we already know that either ℓ1 = ℓ0 or Ω ⊢ ℓ1, so we

are done.

Case LET: We start by using induction on the first premise. This tells us that Ω ⊢ τ1,

so ⊢ Ω.(Γ[id := τ1) and we can continue using induction on the second premise. The

rest is analogous to the PAIR case.

Case DEREF: The proof that Ω ⊢ τ is analogous to the UNIT case. By induction,

Ω ⊢ ℓ2, so Ω ⊢ S(ℓ2). Our requirements for C are satisfied by induction, so we need

only show that Ω ⊢ ℓ2 and either Ω ⊢ ℓ1 or ℓ1 = ℓ0. Both are immediate by induction.

Case COMP: We may assume by alpha-renaming that b /∈ K. Thus since we know

that Ω ⊢ k, we can safely use induction on our typing premise. After this, the proof

that Ω ⊢ τ is straightforward.

By induction, we know that either ∆, (K, b < k) ⊢ ℓend or ℓend = αstart. In the

former case, ℓend[ℓinit/αstart] = ℓend, so by the rounding lemma Ω ⊢ round((, ℓ)end, b).

Otherwise,

245

ℓend[ℓinit/αstart] = ℓinit.

We can use the same logic on the first element of each constraint in C0, C1, and

C2. The claim for the second element follows more easily by induction. Finally, note

that the round function does not add any free variables.

Case ABS: Since we have as a premise that Ω ⊢ ℓ′ and Ω ⊢ tf , this case is immediate.

Case APP: By induction, we know that Ω ⊢ tf , and therefore that Ω.∆∪κ∪α,Ω.K ⊢

τout, ℓin, ℓout, Cf . Therefore, since Ω ⊢ k, ℓ, we have that Ω ⊢ τout[ℓ/α][k/κ] and simi-

larly for ℓin, ℓout and Cf . By induction we also know that either Ω ⊢ ℓ2 or ℓ2 = ℓstart.

Thus all we need to show is that our desired property holds for C1 and C2, which

follows the same pattern as the PAIR case.

Lemma (F-1): If ⊢ Ω, α /∈ Ω.∆, and Ω, α ⊢ e : τ, ℓend, C, then either ℓend = α or

α does not appear in ℓend. Furthermore, for each constraint x ≤ y in C, α does not

appear in y, and if α appears in x then x = α.

Proof: Immediate upon application of the wellformed-helper lemma.

A.3.4 Constraint Lemmas

Lemma (Monotonicity): If ⊢ Ω and Ω, ℓstart ⊢ e : τ, ℓend, C, then C ⇒ ℓstart ≤ ℓend.

Proof: Structural induction on the typing judgement.

Case PAIR: By induction, C1 ⇒ ℓ0 ≤ ℓ1 and C2 ⇒ ℓ1 ≤ ℓ2, so by transitivity

C1 ∧ C2 ⇒ ℓ0 ≤ ℓ2 as required.

Case DEREF: By induction, C ⇒ ℓ0 ≤ ℓ1, so by transitivity C ∧ ℓ1 ≤ ℓ2 ⇒ ℓ0 ≤ ℓ2.

Case LOOP: By induction, C ⇒ αstart ≤ ℓend. Since substitution preserves implica-

246

tion, C0 implies that

ℓinit = αstart[ℓinit/αstart][0/b] ≤ ℓend[ℓinit/αstart][0/b],

and from the rounding lemma we get that

ℓend[ℓinit/αstart][0/b] ≤ round(ℓend[ℓinit/αstart], b)

Case APP: By the well-formedness lemma, Ω ⊢ tf , so Cf ⇒ ℓin ≤ ℓout. Since

substitution preserves implication, Cf [ℓ/α][k/κ] ⇒ ℓin[ℓ/α][k/κ] ≤ ℓout[ℓ/α][k/κ].

The rest is straightforward by transitivity.

Lemma (Bounded Constraints): If ⊢ Ω and Ω, ℓstart ⊢ e : τ, ℓend, C, then for each

constraint x ≤ y in C we have that C ⇒ ℓstart ≤ x ≤ y ≤ ℓend.

Proof: Induction on the typing judgement.

Case PAIR: By induction on the first premise, we have that for each constraint x ≤ y

in C1, C1 ⇒ ℓ0 ≤ x ≤ y ≤ ℓ1. By monotonicity on the second premise, C2 ⇒ ℓ1 ≤ ℓ2.

Hence C1 ∧ C2 ⇒ ℓ0 ≤ x ≤ y ≤ ℓ2. The argument for the constraints in C2 is the

analogous, except we use monotonicity to show that C1 ⇒ ℓ0 ≤ ℓ1.

Case DEREF: By induction, we know that for each constraint x ≤ y ∈ C, C ⇒ ℓ0 ≤

x ≤ y ≤ ℓ1, and C ∧ ℓ1 ≤ ℓ2 ⇒ y ≤ ℓ1 ≤ ℓ2 < S(ℓ2). For the final constraint ℓ1 ≤ ℓ2

note that ℓ2 < S(ℓ2) is immediate, and C ⇒ ℓ0 ≤ ℓ1 follows from monotonicity.

Case LOOP: Let ℓend be the ending effect of the loop body, and ℓfinal = round(ℓend[ℓinit/αstart], b)

be the ending effect of the original judgement. By induction, we know that for each

constraint x ≤ y ∈ C, we have C ⇒ αstart ≤ x ≤ y < ℓend.

247

By definition of C0 this means that

C0 ⇒ ℓinit = αstart[ℓinit/αstart][0/b] ≤ x[ℓinit/αstart][0/b]

≤ y[ℓinit/αstart][0/b] < ℓend[ℓinit/αstart][0/b] = ℓ1 ≤ ℓfinal,

where the last inequality follows from the rounding lemma. Since we just showed that

C0 ⇒ ℓinit ≤ ℓ1. we can use the same logic for C1, and similarly for C2.

Case APP: By monotonicity, we quickly conclude that the constraints imply that

ℓ0 ≤ ℓ1 ≤ ℓ2 ≤ ℓin[ℓ/α][k/κ] ≤ ℓout[ℓ/α][k/κ].

Thus our property holds for the final constraint ℓ2 ≤ ℓin[ℓ/α][k/κ], and for all

constraints in C1 and C2 by induction. For constraints in Cf [ℓ/α][k/κ], our property

holds because Ω ⊢ tf , by well-formedness.

A.3.5 Weakening Lemmas

Lemma (Location Weakening): Assume ⊢ Ω and Ω, ℓstart,⊢ e : τ, ℓend, C where

⊨ C. Then for all ℓ′start ≤ ℓstart, then there is some ℓ′end ≤ ℓend such that Ω, ℓ′start,⊢

e : τ, ℓ′end, C
′, where ⊨ C ′. Furthermore, either ℓ′end = ℓend or ℓ′end = ℓ′start.

Proof: Structural induction over the typing relation.

Case UNIT: In this case, ℓ′end = ℓ′start and ℓ′start ≤ ℓstart = ℓend, and of course

C ′ = true is valid.

Case PAIR: By induction, Ω, ℓ′start ⊢ e1 : τ1, ℓ
′
1, C

′
1 where ⊨ C ′

1, ℓ′1 ≤ ℓ1, and either

ℓ′1 = ℓ′start or ℓ′1 = ℓ1. In the latter case, we may re-use our second premise and

we are done. Otherwise, we can use induction on the second premise to get that

248

Ω, ℓ′start ⊢ e2 : τ2, ℓ
′
2, C

′
2, where ⊨ C ′

2, ℓ′2 ≤ ℓ2, and either ℓ′2 = ℓ2 or ℓ′2 = ℓ′start. We can

then reapply the PAIR rule to finish the case.

Case DEREF: By induction, we can show that Ω, ℓ′start ⊢ e : addr(T)⟨ℓ2⟩, ℓ′1, C ′

where ℓ′1 ≤ ℓ1 and ⊨ C ′. Since our original constraints were valid, we know that

⊨ ℓ1 ≤ ℓ2, so by transitivity ⊨ ℓ′1 ≤ ℓ2. We can thus apply the DEREF rule, noting

that ℓ′end = S(ℓ2) = ℓend.

Case IF-LEFT: By induction, we can show that Ω, ℓ′start ⊢ e1 : Bool⟨ℓ⟩, ℓ′1, C ′
1, where

⊨ C ′
1 and either ℓ′1 = ℓ1 or ℓ′start = ℓ′1 ≤ ℓ1. In the former case, we may re-use the other

two premises and finish immediately. Otherwise, by induction Ω, ℓ′start ⊢ e2 : τ, ℓ
′
2, C

′
2

and Ω, ℓ′start ⊢ e3 : τ, ℓ′3, C
′
3, where ⊨ C ′

2 ∧ C ′
3, and ℓ′2 and ℓ′3 are each either equal to

ℓstart or ℓ2 and ℓ3, respectively.

We have as a premise that ℓ2 ≤ ℓ3. Thus if ℓ′3 = ℓ3, then by transitivity ℓ′2 ≤ ℓ2 ≤

ℓ3 ≤ ℓ′3, and we may reapply the IF-LEFT rule. Otherwise, ℓ′3 = ℓ′start, and since ⊨ C2

we may apply monotonicity to learn that ℓ′start ≤ ℓ′2, so we may apply the IF-RIGHT

rule.

Case LOOP: In this case, let ℓend refer to the output of the loop body typing judge-

ment, and let ℓfinal refer to the output of the original typing judgement. We do not

need induction here; we can simply reapply the LOOP rule with ℓstart′ instead of

ℓstart. We still need to show that our output satisfies the desired properties, however.

By applying Lemma F-1 to our typing premise, we get that either ℓend = αstart or

ℓend does not contain αstart. In the former case, ℓend[ℓ′start/αstart] = ℓ′start. By alpha-

renaming, we may assume that b does not appear in ℓ′start; thus round(ℓ′start, b) = ℓ′start.

If ℓend does not contain αstart, then round(ℓend[ℓ′start/αstart], b) = round(ℓend[ℓstart/αstart], b) =

ℓfinal.

Also by lemma F-1, we get that for each constraint x ≤ y in C, αstart appears only

in x, and only if x = αstart. Thus for any ℓ, ℓ′ with ℓ ≤ ℓ′, x[ℓ/αstart] ≤ x[ℓ′/αstart] ≤

249

y[ℓ′/αstart] = y[ℓ/αstart] = y. If b does not appear in ℓ or ℓ′, then the substitu-

tions for αstart will commute with those for b, so if we know that x[ℓ′/αstart][i/b] ≤

y[ℓ′/αstart][i/b] we will also have x[ℓ/αstart][i/b] ≤ y[ℓ/αstart][i/b].

We may assume that b does not appear in ℓstart or ℓ′start by alpha-renaming. Thus

we know that our new version of ⊨ C0 immediately. Similarly, we know that our new

ℓ1 does not contain b, and is at most the original ℓ1, so we may apply the same logic

to show that our new C1 is valid. Finally, we repeat the process to show that our

new C2 is valid.

Case APP: As in the PAIR case, we use induction to show that Ω, ℓ′start ⊢ e1 :

τf , ℓ
′
1, C

′
1, and if ℓ′1 = ℓ′start we continue to show that Ω, ℓ′start ⊢ e2 : τin[ℓ/α][k/κ], ℓ

′
2, C

′
2,

where ⊨ C ′
1 ∧ C ′

2. Because ⊨ C, we note that ℓ′2 ≤ ℓ2 ≤ ℓin[ℓ/α][k/κ], so we may

reapply the APP rule with the same ℓend and Cf as before.

Definition:If we have two maps M,M ′, we say that M ′ ⊇ M if M [k] = v implies

M ′[k] = v. Say that Ω′ ⊇ Ω if Ω′.G ⊇ Ω.G and Ω′.∆ ⊇ Ω.∆ and Ω′.Γ ⊇ Ω.Γ and

Ω′.K ⊇ Ω.K.

Lemma (Environment Weakening): If ⊢ Ω and Ω, ℓstart ⊢ e : τ, ℓstart, C, then for

all Ω′ ⊇ Ω where ⊢ Ω′ we have Ω′, ℓstart ⊢ e : τ, ℓend, C.

Proof: Straightforward structural induction over the typing derivation.

A.3.6 Substitution Lemmas

Lemma (Substitution Lemma for ids): If Ω, ℓ ⊢ v : τ1, ℓ, true and Ω.(Γ[id :=

τ1]), ℓ ⊢ e : τ2, ℓ
′, C, then Ω, ℓ ⊢ e[v/id] : τ2, ℓ

′, C.

Proof: Standard induction over the typing derivation.

250

Lemma (Substitution Lemma for bs): If n < n′, and Ω.(K, b < n′), ℓ ⊢ e : τ, ℓ′, C,

then we have Ω[n/b], ℓ[n/b] ⊢ e[n/b] : τ2[n/b], ℓ
′[n/b], C[n/b].

Proof: Structural induction over the typing derivation. Mostly straightforward.

Case INDEX-VAR: If this b is not our target b, then the claim follows by straight-

forward induction. Otherwise, since we assumed that n < n′, we will be able to use

the INDEX-CONST rule after substituting.

Case COMP: We may assume by alpha-renaming that the loop’s b is not our target

b. Since we are substituting in a natural number, we cannot create any repeated

indices, so the rest of the claim follows by induction.

Lemma (Susbtitution Lemma for αs): If ∆′ = ∆ ∪ {α} and ∆,K ⊢ ℓα and

G,∆′,K,Γ, ℓ ⊢ e : τ, ℓ′, C, thenG,∆,Γ[ℓα/α],K, ℓ[ℓα/α] ⊢ e[ℓα/α] : τ [ℓα/α], ℓ
′[ℓα/α], C[ℓα/α]

Proof: Structural induction over the typing derivation.

Case UNIT: We have the assumption that ∆,K ⊢ ℓα and the premise that ∆′,K ⊢ ℓ′,

so ∆ ⊢ ℓ′[ℓα/α] and we may reapply the UNIT rule.

Case LOOP: By alpha-renaming, we may assume that b does not appear in our

current environment. Thus since K ⊢ ℓα, ℓα does not contain any instances of b, so

substituting it into a constraint will not add any instances. Thus since we have the

premise nri(C, b), we conclude that nri(C, [ℓα/α]).

Since ∆′ ̸⊢ αstart, we have that αstart[ℓα/α] = αstart, so our typing premise still

has the right form after induction. The rest is straightforward.

Case ABS: The only nontrivial thing we need to show is that after substituting into

e, our output type is tf [ℓα/α]. By alpha-renaming, we may assume that our α does

not appear in α, and the rest is straightforward.

Case APP: We again use alpha-renaming to assume that our α does not appear in

the α inside τf , nor does any element of ∆. Thus since Ω ⊢ ℓα, substitutions for ℓα

251

commute with substitutions for α. The rest is straightforward.

Lemma (Substitution Lemma for κs): If ∆′ = ∆ ∪ {κ}, and ∆,K ⊢ kκ, and

G,∆′,K,Γ, ℓ ⊢ e : τ, ℓ′, C, thenG,∆,Γ[kκ/κ],K[kκ/κ], ℓ[kκ/κ] ⊢ e[kκ/κ] : τ [kκ/κ], ℓ
′[kκ/κ], C[kκ/κ]

Proof: Structural induction over the typing derivation.

Case UNIT: Identical to the UNIT case from the previous proof.

Case INDEX-VAR: When we use induction on our premise, we get that the new out-

put type is vectort[kκ/κ], k[kκ/κ], and (Ω[kκ/κ]).K[b] = k[kκ/κ], so we may reapply

the rule.

Case LOOP/ABS/APP: Analogous to the cases from the previous lemma.

A.3.7 Loop lemmas

Lemma (Loop Unrolling Helper): Let x and y be effects, each of which contains

at most one variable i, which is a b. Assume that that x[0/i] ≤ y[0/i] ≤ x[1/i] ≤

y[1/i] ≤ x[2/i] ≤ y[2/i]. Then, taking the list-based view of effects, one of the

following is true for each index j:

• xj = yj, or

• there is some previous index j′ < j where xj′ = yj′ = i+ n for some n ∈ N.

Proof: Assume towards a contradiction there’s some index that doesn’t satisfy either

of these; let j be the first such index. Since j is the first, x and y are identical at

each previous index, and since j fails the second point x and y must be constants at

each prior index. Thus we cannot have xj < yj or xj > yj, since this would fail one

of the inequalities x[0/i] ≤ y[0/i] ≤ x[1/i]. So xj and yj must be incomparable; the

only way for this to happen is for one to be a constant m and the other to be i+ n,

where m,n ∈ N.

252

We now have four cases:

1. If xj = i+ n and yj = m with n ≥ m− 1 then we would have x[2/i] > y[2/i], a

contradiction.

2. If xj = i+ n and yj = m with n < m− 1 then we would have x[1/i] < y[0/i], a

contradiction.

3. If xj = m and yj = i + n with n ≥ m then we would have y[1/i] > x[2/i], a

contradiction.

4. If xj = m and yj = i+ n with n < m then y[0/i] < x[0/i], a contradiction.

Lemma (Loop Unrolling): Assume ⊢ Ω and Ω, αstart ⊢ e : τ, ℓend, C. For all ℓinit

and bounded sizes i, define ℓ0 = ℓinit, C0 = C[ℓ0/αstart][0/i] and for j > 0 define

ℓj = ℓend[ℓj−1/αstart][(j − 1)/i] and Cj = C[ℓj/αstart][j/i]. Finally, assume nri(C, i).

Then if M is a model of C0 ∧ C1 ∧ C2, M is also a model of ∀j ≥ 0.Cj.

Proof: Let M be a model of C0 ∧ C1 ∧ C2, and replace all variables in C with their

values in M . After doing so, the only variables in C are αstart and i.

Pick a constraint x ≤ y in C (if none exist, the lemma is trivial). Note that

by lemma F-1, αstart doesn’t appear in y, so we may ignore αstart substitutions into

it.Because C0 ∧ C1 ∧ C2 is true in this model, by the bounded constraints lemma we

get

ℓ0 ≤ x[ℓ0/αstart][0/i] ≤ y[0/i] ≤ ℓend[ℓ0/αstart][0/i] = ℓ1

ℓ1 ≤ x[ℓ1/αstart][1/i] ≤ y[1/i] ≤ ℓend[ℓ1/αstart][1/i] = ℓ2

ℓ2 ≤ x[ℓ2/αstart][2/i] ≤ y[2/i] ≤ ℓend[ℓ2/αstart][2/i] = ℓ3

Again by Lemma F-1, if αstart appears in ℓend then ℓend = αstart. In this case,

253

ℓ0 = ℓ1 = ℓ2 = ℓ3, so our chain of inequalities above is in fact a chain of equalities.

Thus since y and x[ℓ0/αstart] don’t change when we substitute i into them, they must

both be constants (since they contain no other variables), and so the constraint holds

regardless of i.

Otherwise, ℓend does not contain αstart, so we may ignore that substitution. We

now split into cases, based on whether or not x = αstart.

If so, then we can consolidate our above inequality chains into

y[0/i] ≤ ℓend[0/i] ≤ y[1/i] ≤ ℓend[1/i] ≤ y[2/i] ≤ ℓend[2/i].

Since we have substituted every variable except i, we can use our helper lemma to

show that there is some index j such that ℓendj = yj = i+ n, and for all prior indices

ℓend and y are identical constants. Thus for all j > 0,

x[ℓj/αstart][j/i] = ℓj[j/i] = ℓend[(j − 1)/i] < y[j/i] = y[ℓj/αstart][j/i].

Thus the constraint x ≤ y holds in all Cj for j > 0.

If x ̸= αstart, by lemma F-1 αstart does not appear in x, so we may consolidate our

big inequality into

x[0/i] ≤ y[0/i] ≤ x[1/i] ≤ y[1/i] ≤ x[2/i] ≤ y[2/i].

As in the previous case, we apply our helper lemma to conclude that x and y are

identical up to some index j, where xj = yj = i + n for some n ∈ N. Since we have

as a premise that nri(C, i), neither x nor y contain multiple copies of i. Since i was

the only variable remaining, this means that all future entries are constants. Thus

the proof that x[0/i] ≤ y[0/i] shows that x[j/i] ≤ y[j/i] for all j ≥ 0, and so the

constraint holds in all Cj.

254

Since x ≤ y was an arbitrary constraint in C, this argument works for each

constraint individually, so by combining them we have shown that each constraint in

Cj is true for all j > 0; since we already know that C0 is satisfied, we have shown

∀j ≥ 0.Cj as required.

A.4 Proof of Soundness

Theorem (Soundness): Let Σ, z ⊢ e : τ, z′′, C where ⊢ Σ and ⊨ C. Then either

e is a value or there are some M ′, z′, e′ such that M, z, e → M ′, z′, e′. Furthermore,

M ′ ∼ Σ.G, and Σ, z′ ⊢ e′ : τ, z′′, C ′ where ⊨ C ′.

As usual, we prove this theorem in two parts: progress and preservation.

Theorem (Progress):: Let Σ, z ⊢ e : τ, z′, C where ⊨ C. Let M ∼ Σ.G. Then

either e is a value or there are some M ′, z′′, e′ such that M, z, e → M ′, z′′, e′.

Proof: Structural induction on the typing derivation.

Case UNIT/TRUE/FALSE/ADDR/ABS: In these cases e must be a value, so we

are done.

Case VAR: Since Σ.Γ = ∅, this case is impossible.

Case PAIR: Here, e = (e1, e2) and C = C1 ∧C2. Since ⊨ C, ⊨ C1; thus by induction,

either e1 is a value or there is some M ′, z′′, e′1 such that M, z, e1 → M ′, z′′, e′1. In the

former case, we may apply the PAIR-2 rule; in the latter case, we may apply the

PAIR-1 Rule.

Case FST: Here e = fst e1. By induction, either e1 is a value or it steps to something.

In the latter case, we may apply FST-1. Otherwise, by canonical forms e1 = (v0, v1),

so we may apply FST-2.

255

Case SND: Analogous to the FST case.

Case VECTOR: Here, e = vector(v0, . . . , vn, e0, . . . , em). If all entries of e are values,

then e is a value and we are done. Otherwise, by induction e0 steps to something,

and thus we may apply the VECTOR rule.

Case LET: Here, e = let x = e1 in e2. If e1 is a value then we may apply LET-2,

otherwise by induction we may apply LET-1.

Case DEREF: Here, e =!e1. If e1 is not a value, then by induction we may apply

DEREF-1. Otherwise, by canonical forms, ℓ2 is a concrete effect ze and e1 = addr(ze).

Furthermore, since e1 is a value, ℓ1 = ℓ0 = z. Since ⊨ C, z = ℓ1 ≤ ℓ2 = ze. Also by

canonical forms, G[ze] = T . Thus, since M ∼ G, M [ze] exists. This is sufficient to

apply the DEREF-2 rule.

Case UPDATE: Here, e = e1 := e2. By induction, either e1 is a value or it steps, and

similarly for e2. If e1 steps then we may apply UPDATE-1; otherwise, if e2 steps we

may apply UPDATE-2. If both are values, then z = ℓ0 = ℓ1 = ℓ2. By canonical forms,

ℓ3 is a concrete effect ze, e1 = addr(ze), and G[ze] = T . Since ⊨ C, z = ℓ2 ≤ ℓ3 = ze,

and since M ∼ G, M [ze] exists. Thus we may apply the UPDATE-3 rule.

Case IF-LEFT: Here e = if e1 then e2 else e3. By induction, either e1 is a value

or it steps. In the latter case, we may apply IF-1. In the former case, by canonical

forms e1 is either true or false, so we may apply either IF-TRUE or IF-FALSE

accordingly.

Case IF-RIGHT: Identical to IF-LEFT.

Case INDEX-CONST: Here e = e1[n]. By induction, either e1 is a value or it

steps. In the latter case, we may apply INDEX-1. Otherwise, by canonical forms

e1 = vector(v0, . . . , vn′−1). We have the premise that n < n′, so n ≤ n′ − 1 = m and

we may apply the INDEX-2 rule.

256

Case INDEX-VAR: Since Σ.K is empty, this case cannot occur.

Case LOOP: Since Σ ⊢ k and Σ.∆,Σ.K are empty, k must not be a polymorphic

variable or b. Hence k ∈ N, so we may apply the LOOP rule.

Case COMP: Identical to LOOP.

Case APP: Here e = e0 [k, ℓ] e1. By induction, e0 either steps or is a value, and

similarly for e1. If e1 steps, we may apply APP-1; otherwise, if e2 steps, we may

apply APP-2. If both are values, then by canonical forms v is a function value, so we

may apply APP-3.

Theorem (Preservation): Let Σ, zstart ⊢ e : τ, zend, C andM, zstart, e,→ M ′, zstep, e
′,

where ⊨ C and M ∼ Σ.G. Then M ′ ∼ Σ.G, and Σ, zstep ⊢ e′ : τ, z′end, C
′, where ⊨ C ′

and z′end ≤ zend.

Proof: Structural induction on the typing derivation.

Case UNIT/TRUE/FALSE/ADDR/ABS: No operational semantics rule applies

to these expressions (since they are values), so these cases are impossible.

Case VAR: This case is impossible because Σ.Γ is empty.

Case PAIR: In this case, e = (e1, e2). We have two typing premises, Σ, z ⊢ e1 :

τ1, ℓ1, C1 and Σ, ℓ1 ⊢ e2 : τ2, zend, C2. Since ⊨ C1 ∧ C2, ⊨ C1 and ⊨ C2. We now have

two options for which operational semantics rule we used.

If we used the PAIR-1 rule, then M, zstart, e1 → M ′, zstep, e
′
1 and e′ = (e′1, e2).

By induction on the first typing premise, we conclude that M ′ is well-formed, and

Σ, zstep ⊢ e′1 : τ1, ℓ
′
1, C

′
1, where ⊨ C ′

1 and ℓ′1 ≤ ℓ1.

We may then apply weakening to the second premise, to get that Σ, ℓ′1 ⊢ e2 :

τ2, z
′
end, C

′
2, where ⊨ C ′

2 and z′end ≤ zend. Combining these two premises is enough to

show that Σ, zstep ⊢ e′ : τ, z′end, C
′
1 ∧ C ′

2; note that ⊨ C ′
1 ∧ C ′

2 since both conjuncts are

valid.

257

If we used the PAIR-2 rule, then e1 is a value, so by applying lemma V-1 to the

first typing premise, we get that ℓ1 = zstart = zstep. We may then use induction on

the second premise to find that M ′ is well-formed and Σ, zstep ⊢ e′2 : τ2, ℓ
′
2, C

′
2, where

⊨ C ′
2 and ℓ′2 ≤ ℓ2. We can then combine this with the first typing premise to apply

the PAIR typing rule.

Case FST: In this case, e = fst e1. We have two options for which operations

semantics rule we used. The case for the FST-1 rule is analogous to the case for the

PAIR-1 rule. If we used the FST-2 rule, then M ′ = M is well-formed, zstart = zstep,

and e1 = (v1, v2) and e′ = v1. By canonical forms, we know that Ω, zstart ⊢ v1 :

t1⟨ℓv.1⟩, zend, true, which is exactly what we needed to show.

Case SND: Analogous to case FST.

Case VECTOR: In this case, e is a vector expression, so we must have used the VEC-

TOR operational semantics rule. Hence e = vector(v0, . . . , vn, e0, . . . , em), where e0

is the first non-value subexpression. Furthermore, e′ = vector(v0, . . . , vn, e′0, . . . , em).

From the premises of the typing judgement, we know that Σ, zstart ⊢ v0 : τ1, ℓ1, C1,

Σ, ℓ1 ⊢ v1 : τ2, ℓ2, C2, and so forth until Σ, ℓn ⊢ e0 : τn+1, ℓn+1, Cn+1. Since ⊨ C1 ∧

C2 ∧ ... ∧ Cn+m, we have ⊨ Ci for each i. Furthermore, since v0, . . . , vn are values, by

lemma V-1 we have zstart = ℓ1 = · · · = ℓn.

Thus by induction, we may show that M ′ is well-formed and Σ, zstart ⊢ e′0 :

τn+1, z
′
n+1, C

′
n+1. where ⊨ C ′

n+1 and z′n+1 ≤ zn+1. By lemma V-2, we may replace

the location zstart with zstep in all of the value typing judgements, and by weakening

we may change the starting location of the e1 judgement (if it exists) to z′n+1. By

combining our new judgment with the replaced judgements and with the remainder

of the original typing premises, we can prove that Σ, zstep ⊢ e′ : τ, z′end, C1 ∧C2 ∧ · · · ∧

C ′
n+1 ∧ C ′

n+2 ∧ · · · ∧ Cn+m; note that the output constraints are valid because each

of the components is valid. Furthermore, either z′end = zend (if e0 was not the last

258

component), or zend′ = z′n+1 ≤ zn+1 = zend (if e0 was the last component). In either

case, z′end ≤ zend as required.

Case LET: We have two cases for which operational semantics rule we used. The

LET-1 case is analogous to PAIR-1. If we used LET-2, then M ′ = M is well-formed,

zstep = zstart, e = let x = v in e1, and e′ = e1[v/x]. By applying lemma V-2 to

the first typing premise, we obtain that Σ, zstart ⊢ v : τ1, zstart, true and Σ.(Γ[x :=

τ1]), zstart ⊢ e : τ, zend, C2. By the substitution lemma for xs, we may turn the latter

premise into Σ, zstart ⊢ e[v/x] : τ, zend, C2. Since ⊨ C2, this is exactly what we needed

to show.

Case DEREF: As before, we have two cases for the operational semantics rule, and

the DEREF-1 case is analogous to the PAIR-1 case. If we used DEREF-2, then

e =!addr(ze), M ′ = M is well-formed, zstart ≤ ze, and zstep = S(ze). Furthermore,

our typing premise becomes Σ, zstart ⊢ addr(ze) : addr(T)⟨ℓ2⟩, ℓ1, C1, and we learn

that τ = T ⟨ℓ′⟩ and zend = ℓ2. Finally, since ⊨ C1 ∧ ℓ1 ≤ ℓ2, we know that ℓ1 ≤ ℓ2.

By applying canonical forms to our typing premise, we get that ℓ2 = ze and

Σ.G[ze] = T . Since M is well-formed, Σ, S(ze) ⊢ M [ze] : T ⟨ℓ′⟩, S(ze), true, which is

what we needed to show.

Case UPDATE: Here we have three possible operational semantics rules. UPDATE-

1 is anaologous to PAIR-1. UPDATE-2 is similar to UPDATE-1, but we need to use

lemma V-2 on the first premise as in the PAIR case.

If we used UPDATE-3, then we get that e = addr(ze) := v, e′ = (), τ = Unit⟨ℓ′⟩,

and zstep = S(ze). From canonical forms we get that Σ.G[ze] = T and ℓ3 = ze. By

lemma V-1, our second typing premise is now Σ, zstart ⊢ v : T ⟨ℓ⟩, zstart, true, which

shows that M [ze := v] is well-formed. Finally, note that ℓend = S(ℓ3) = S(ze) = zstep,

and we may immediately show that Σ, S(ze) ⊢ () : τ, S(ze), true using the UNIT rule.

Case IF-LEFT: We have three cases for the operational semantics rule. The IF-

259

1 case is analogous to the PAIR-1 case. In both the other cases, we have e =

if v then e2 else e3, M ′ = M is well-formed, and zstep = zstart. Since v is a

value, we may apply lemma V-1 to our first typing premise, turning the other judge-

ments into Σ, zstart ⊢ e2 : τ, ℓ2, C2 and Σ, zstart ⊢ e3 : τ, ℓ3, C3. Finally, we have that

ℓ2 ≤ ℓ3 = zend.

In the IF-TRUE case, we use induction on the first of these premises to get that

Σ, zstep ⊢ e2 : τ, ℓ
′
2, C

′
2, where ⊨ C ′

2, and ℓ′2 ≤ ℓ2. Since ℓ2 ≤ ℓ3 = zend, this is what we

needed to show. The IF-FALSE case is similar.

Case IF-RIGHT: Similar to IF-LEFT.

Case INDEX-CONST: Analogous to the FST case

Case INDEX-VAR: Since Σ.K is empty, this case is impossible.

Case LOOP: In this case, we must have used the LOOP operational semantics rule.

We know that e = for b < k do e1, that k ∈ N, and that Σ.(K, b < k), αstart ⊢ e1 :

τ, ℓend, Cloop. We also know that C0, C1 and C2 are valid. Finally, we know that M ′ =

M is well-formed, that zstep = zstart, and that e′ = e[0/b]; e[1/b]; . . . ; e[k − 1/b]; ().

Recall that this is syntactic sugar for let x1 = e[0/b] in let x2 = e[1/b] in . . . ,

where the xi do not appear anywhere else in the program.

First, we use environment weakening to turn our premise into G, {αstart}, {b :=

k}, ∅, αstart ⊢ e1 : τ, ℓend, Cloop. This lets us use the substitution lemmas for αs and

bs to show that for all ℓα, k′ such that Σ ⊢ ℓα and k′ < k we may turn our typing

premise into

Σ, αstart[ℓα/αstart][k
′/b] ⊢ e1[ℓα/αstart][k

′/b] :

τ [ℓα/αstart][k
′/b], ℓend[ℓα/αstart][k

′/b], Cloop[ℓα/αstart][k
′/b]

Fortunately, we may simplify: τ doesn’t matter here, so we drop the substitutions

260

into it; similarly, since αstart ̸∈ Σ, we may assume by alpha-renaming that αstart does

not appear in e1. Thus we end up with

Σ, ℓα[k
′/b] ⊢ e1[k

′/b] : τ, ℓend[ℓα/αstart][k
′/b], Cloop[ℓα/αstart][k

′/b]

Now, by setting ℓα = zstep and k′ = 0 in our above judgement, we can immediately

show that

Σ, zstep ⊢ e1[0/b] : τ, ℓend[zstep/αstart][0/b], Cloop[zstep/αstart][0/b].

Now define ℓ0 = zstart = zstep and C0 = C[ℓ0/αstart][0/b], and for j > 0 define

ℓj = ℓend[zstart/αstart][(j−1)/b] and Cj = C[ℓj/αstart][j/b]. Note that these definitions

are consistent with the ones in the LOOP typing rule. Using these definitions, we

can rewrite the above judgement as

Σ, ℓ0 ⊢ e1[0/b] : τ, ℓ1, C0

We claim that for all j > 0, ℓj = ℓend[ℓj−1/αstart][(j − 1)/b]. By lemma F-

1, either ℓend = αstart or αstart does not appear in ℓend. In the former case, ℓj =

ℓend[zstart/αstart][(j − 1)/b] = zstart[(j − 1)/b] = zstart. In the latter case, the αstart

substitution into ℓend has no effect, so the claim is trivial.

Thus we can apply this same process to show that for 0 ≤ j < k,

Σ, ℓj ⊢ e1[0/b] : τ, ℓj+1, Cj.

We can then apply environment weakening again to change Σ into Σ.(Γ[xi = τ]) in

the above judgement. This allows us to apply the LET rule several times, terminating

with the UNIT rule, to obtain the typing judgement we need. There remain two things

to show. The first is that ℓk ≤ round(ℓend[ℓinit/αstart], b), which follows immediately

261

by definition of ℓk and the rounding lemma.

The second thing we must show is that each of the Cj output above is valid.

Fortunately, we have shown our definition of ℓj and Cj is the same as that in the

Loop Unrolling lemma. Thus we may apply the lemma to show that any model for

C0 ∧ C1 ∧ C2 is also a model for ∀j ≥ 0.Cj. Since C0 ∧ C1 ∧ C2 is valid, this means

that each Cj is valid, and we are done.

Case COMP: This is analogous to the LOOP case, except that instead of using the

LET rule many times, we apply the VECTOR rule once, again relying on the Loop

Unrolling lemma to ensure all the constraints are satisfied.

Case APP: The APP-1 case is analogous to the PAIR-1 case, and the APP-2 case is

analogous to the UPDATE-2 case, except that we use the transitivity of ≤ to satisfy

the last constraint after using effect weakening.

In the APP-3 case, we have that M ′ = M is well-formed, zstep = zstart = ℓ1 = ℓ2,

and e = v1 [k, ℓ] v2. By canonical forms v1 = fun [κ, α](x : τin, ℓin) → ebody, where

Σ.G, {κ} ∪ {α}, ∅, {x := τin}, ℓin ⊢ ebody : τout, ℓout, Cf .

We can then use our substitution lemmas for αs, κs, and xs to turn this typing

judgement into

Σ, ℓin[ℓ/α][k/κ] ⊢ ebody[v2/x][ℓ/α][k/κ] : τout[ℓ/α][k/κ], ℓout[ℓ/α][k/κ], Cf [ℓ/α][k/κ]

Since we know that zstep = ℓ2 ≤ ℓin[ℓ/α][k/κ], and since ⊨ Cf [ℓ/α][k/κ], we can

apply effect weakening to conclude that there is some ℓ′out ≤ ℓout[ℓ/α][k/κ] and some

valid C ′
f such that

Σ, zstep ⊢ ebody[v2/x][ℓ/α][k/κ] : τout[ℓ/α][k/κ], ℓ
′
out, C

′
f

This is exactly what we needed to show.

262

Appendix B

Parasol

B.1 Comparison to hand-optimized code

We also compared Parasol solutions to hand-optimized solutions for three of our ap-

plications: Fridge, Conquest, and Starflow. Parasol’s solutions performed reasonably

close to the hand-optimized solutions for all 3 applications. We describe each appli-

cation in more detail below.

Fridge (Unbiased RTT) The Fridge[89] data structure is used to collect RTT

samples in the data plane by storing requests and matching them with the corre-

sponding response, without penalizing samples with a large RTT. Each request is

added to the data structure with probability p, and once a request is in the structure,

it can be removed either upon receipt of the response, or if a new response overwrites

it when the structure is full.

The value of p is the primary parameter to be optimized. If p is too small, requests

are less likely to be added to the structure, and the program will not produce enough

RTT samples. Conversely, if p is too large, requests are more likely to be overwritten

before their responses arrive.

In general, the objective function that Fridge seeks to minimize is the difference

263

between the distribution of sampled RTTs and the distribution of all RTTs. We

implemented the same error function in Parasol as was used in the original evaluation

of Fridge [89]: maximum percentile error, or the maximum error of the sampled

distribution for percentiles ∈ [5%, 95%].

In the hand-tuned program, the authors achieved an error of 25%, and our opti-

mized program, found using exhaustive search, achieved a maximum delay estimation

error of 18%, well within the expected performance. The Fridge authors found that

they could achieve nearly the same error with a wide range of p values. In our work-

loads, Parasol also found that p had a negligible effect on error as long as it greater

than 2−10 (0.001) or less than 2−3 (0.13). Going outside of that bound for the chosen

fridge size increased the error to over 45%.

Conquest. Conquest [23] aims to identify flows that are making a significant contri-

bution to queue build-up, during some time window T . It maintains several sketches

as “snapshots” of the queue length for T . During a time window, the program cleans

one sketch, writes to one sketch, and reads a flow’s queue length estimates from the

rest.

Conquest has three parameters that can impact its performance: the number of

sketches and the rows and columns in each sketch. These parameters are challenging

to tune because the choice of one affects the others. If the number of columns is too

large, it reduces the number of rows that will fit on the target, and the sketch may

not be fully cleaned before rotating. Conversely, too many rows requires less columns

and smaller sketches. As a sketch gets smaller, it becomes less accurate.

The objective of Conquest is to identify the packets responsible for queue build-up

as accurately as possible. For comparison with the original evaluation, we quantify

accuracy using the F-score1, which depends on both precision and recall.

The original evaluation of Conquest found that it could achieve both precision
1Specifically, the cost is 1 minus the F-score

264

and recall greater than 90%, i.e., an F-score >90%. Parasol found a comparable

configuration with an F-score of 92% (precision of 97% and recall of 87%). The

Parasol optimizer used the Bayesian search strategy, and the configuration was found

after 9 iterations.

The choice of metric used for cost affects the configuration chosen by the optimizer.

F-score incorporates both precision and recall. A configuration with lower precision

has more false positives, and a lower recall means more false negatives. Some appli-

cations may be more tolerant to false negatives, and others may prefer false positives.

We can tailor the objective function based on an application’s preference.

To minimize false positives, we can optimize for precision. This will result in a

larger sketch, that keeps more accurate counts for each flow. On the other hand, we

can optimize for recall to minimize false negatives. This produces a configuration

with a smaller sketch, which will result in more flows being identified as significant

contributors. In other words, more true positives, at the cost of more false positives

as well.

Starflow. Starflow [74] is a telemetry system that partitions query processing be-

tween the data plane and software. The switch selects and groups per-packet records,

which are sent to software for flow-level analytics (e.g., classifying traffic, identifying

microbursts). Packet records are stored within buffers on the switch, and are evicted

to software when their buffer is filled, no buffer is available, or there is a collision.

There are two kinds of buffers, whose sizes must be configured at compile time: a

“narrow” buffer, which tracks many small flows, and a “wide” buffer for tracking a

few large flows.

The most important performance metric for Starflow is its eviction ratio: the

ratio of flushed cache records to packets. A lower eviction ratio is preferable because

it means that more packets are being covered by each record that the server must

265

process, saving both bandwidth and processing time at server.

The original, hand-optimized P4 code achieved an eviction ratio between 7.1% and

25%, depending on the size of the cache and the workload. The Parasol optimizer

achieved an eviction ratio of 15%, well within the performance range of the original

program. In other words, 15 out of every 100 packets are recirculated to evict a

record from the cache. The best compiling configuration was found after 7 (out of

85) iterations (1.5 min) of simulated annealing. We found that both the sizes of the

narrow and wide buffers impacted the eviction ratio. Our optimizer found, for our

representative traffic trace, that a narrow cache smaller than 1024 slots and a wide

cache smaller than 8192 slots resulted in an eviction ratio greater than 40%, with

fixed wide and narrow caches, respectively.

266

Bibliography

[1] 0 (2023a). Intel Tofino: P4-programmable Ethernet switch ASIC that delivers bet-

ter performance at lower power. https://www.intel.com/content/www/us/en/

products/network-io/programmable-ethernet-switch/tofino-series.html.

[2] 0 (2023b). P4 publications. https://p4.org/publications/.

[3] Abhashkumar, A., Lee, J., Tourrilhes, J., Banerjee, S., Wu, W., Kang, J.-M.,

& Akella, A. (2017). P5: Policy-driven optimization of P4 pipeline. In ACM

Symposium on SDN Research, SOSR ’17 (pp. 136–142). New York, NY, USA:

Association for Computing Machinery.

[4] Alcoz, A. G., Busse-Grawitz, C., Marty, E., & Vanbever, L. (2022). Reducing p4

language’s voluminosity using higher-level constructs. In International Workshop

on P4 in Europe, EuroP4 ’22 (pp. 19–25). New York, NY, USA: Association for

Computing Machinery.

[5] Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fin-

gerhut, A., Lam, T. V., Matus, F., Pan, R., Yadav, N., & Varghese, G. (2014).

CONGA: distributed congestion-aware load balancing for datacenters. In ACM

SIGCOMM (pp. 503–514).

[6] Allen, J. R., Kennedy, K., Porterfield, C., & Warren, J. (1983). Conversion of

control dependence to data dependence. In Proceedings of the 10th ACM SIGACT-

267

SIGPLAN Symposium on Principles of Programming Languages, POPL ’83 (pp.

177–189). New York, NY, USA: Association for Computing Machinery.

[7] Anderson, C. J., Foster, N., Guha, A., Jeannin, J., Kozen, D., Schlesinger, C.,

& Walker, D. (2014). NetKAT: Semantic foundations for networks. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (pp.

113–126).: ACM.

[8] Baldi, M. (2020). Pensando Announces P4-programmable Platform and Joins

P4 Community. https://opennetworking.org/news-and-events/blog/pensando-

announces-p4-programmable-platform-and-joins-p4-community/.

[9] Banks, R., Jang, S., Carr, S., Sweany, P., & Kuras, D. (1999). A code generation

framework for vliw architectures with partitioned register banks. Procs. of 3rd.

Int. Conf. on Massively Parallel Computing Systems.

[10] Ben-Basat, R., Chen, X., Einziger, G., & Rottenstreich, O. (2018). Efficient

Measurement on Programmable Switches Using Probabilistic Recirculation. In

IEEE International Conference on Network Protocols (pp. 313–323).

[11] Benson, T., Akella, A., & Maltz, D. A. (2010). Network traffic characteristics

of data centers in the wild. In ACM SIGCOMM Internet Measurement Confer-

ence, IMC ’10 (pp. 267–280). New York, NY, USA: Association for Computing

Machinery.

[12] Birge-Lee, H., Apostolaki, M., & Rexford, J. (2022). It takes two to tango:

Cooperative edge-to-edge routing. In Proceedings of the 21st ACM Workshop on Hot

Topics in Networks, HotNets ’22 (pp. 174–180). New York, NY, USA: Association

for Computing Machinery.

[13] Blackfire Technology (2023). https://www.impactcybertrust.org/.

268

[14] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,

Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., & Walker, D. (2014). P4:

Programming protocol-independent packet processors. ACM SIGCOMM Computer

Communication Review, 44(3), 87–95.

[15] Bradley, A. R., Manna, Z., & Sipma, H. B. (2006). What’s Decidable About

Arrays? In E. A. Emerson & K. S. Namjoshi (Eds.), Verification, Model Check-

ing, and Abstract Interpretation (pp. 427–442). Berlin, Heidelberg: Springer Berlin

Heidelberg.

[16] Bryant (1986). Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, C-35(8), 677–691.

[17] Butun, I., Tuncel, Y. K., & Oztoprak, K. (2021). Application layer packet

processing using PISA switches. Sensors, 21(23), 8010.

[18] CAIDA (2019). CAIDA 2016 Chicago direction a traces. https://www.caida.

org/catalog/datasets/monitors/passive-equinix-chicago/.

[19] Caprolu, M., Raponi, S., & Pietro, R. (2019). Fortress: An efficient and dis-

tributed firewall for stateful data plane sdn. Security and Communication Net-

works.

[20] Center for Infrastructure Assurance and Security (2023). National collegiate

cyber defense competition.

[21] Chadha, R., Bowen, T., Chiang, C.-Y. J., Gottlieb, Y. M., Poylisher, A., Sapello,

A., Serban, C., Sugrim, S., Walther, G., Marvel, L. M., et al. (2016). Cybervan:

A cyber security virtual assured network testbed. In MILCOM 2016-2016 IEEE

Military Communications Conference (pp. 1125–1130).: IEEE.

269

[22] Chen, P., Wu, Y., Yang, T., Jiang, J., & Liu, Z. (2021). Precise error estimation

for sketch-based flow measurement. In ACM SIGCOMM Internet Measurement

Conference (pp. 113–121).

[23] Chen, X., Feibish, S. L., Koral, Y., Rexford, J., Rottenstreich, O., Monetti, S. A.,

& Wang, T.-Y. (2019). Fine-grained queue measurement in the data plane. In ACM

SIGCOMM Conference on Emerging Networking Experiments And Technologies,

CoNEXT ’19 (pp. 15–29). New York, NY, USA: Association for Computing Ma-

chinery.

[24] Chen, X., Kim, H., Aman, J. M., Chang, W., Lee, M., & Rexford, J. (2020).

Measuring TCP round-trip time in the data plane. In ACM SIGCOMM Workshop

on Secure Programmable Network Infrastructure, SPIN ’20 (pp. 35–41). New York,

NY, USA: Association for Computing Machinery.

[25] Cooper, K. (1998). Live range splitting in a graph coloring register allocator.

International Conference on Compiler Construction.

[26] Cormode, G. & Muthukrishnan, S. (2005). An improved data stream summary:

The count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75.

[27] de Moura, L. & Bjørner, N. (2008). Z3: An Efficient SMT Solver. In C. R.

Ramakrishnan & J. Rehof (Eds.), Tools and Algorithms for the Construction and

Analysis of Systems (pp. 337–340). Berlin, Heidelberg: Springer Berlin Heidelberg.

[28] DeLine, R. & Fahndrich, M. (1999). Natural deduction for intuitionistic non-

commutative linear logic. In International Conference on Typed Lambda Calculi

and Applications.

[29] Fisher, J. A. (1983). Very long instruction word architectures and the eli-512.

In Proceedings of the 10th Annual International Symposium on Computer Archi-

270

tecture, ISCA ’83 (pp. 140–150). New York, NY, USA: Association for Computing

Machinery.

[30] Foster, N., Harrison, R., Freedman, M. J., Monsanto, C., Rexford, J., Story,

A., & Walker, D. (2011). Frenetic: A network programming language. In ACM

SIGPLAN International Conference on Functional Programming (pp. 279–291).:

ACM.

[31] Gao, J., Zhai, E., Liu, H. H., Miao, R., Zhou, Y., Tian, B., Sun, C., Cai, D.,

Zhang, M., & Yu, M. (2020a). Lyra: A cross-platform language and compiler

for data plane programming on heterogeneous ASICs. In ACM SIGCOMM (pp.

435–450).

[32] Gao, X., Kim, T., Wong, M. D., Raghunathan, D., Varma, A. K., Kannan, P. G.,

Sivaraman, A., Narayana, S., & Gupta, A. (2020b). Switch code generation using

program synthesis. In ACM SIGCOMM (pp. 44–61).

[33] Gao, X., Raghunathan, D., Fang, R., Wang, T., Zhu, X., Sivaraman, A.,

Narayana, S., & Gupta, A. (2023). Cat: A solver-aided compiler for packet-

processing pipelines. In Proceedings of the 28th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems, Vol-

ume 3, ASPLOS 2023 (pp. 72–88). New York, NY, USA: Association for Computing

Machinery.

[34] Gifford, D. K. & Lucassen, J. M. (1986). Integrating functional and imperative

programming. In Proceedings of the 1986 ACM Conference on LISP and Func-

tional Programming, LFP ’86 (pp. 28–38). New York, NY, USA: Association for

Computing Machinery.

[35] Girard, J.-Y. (1987). Linear logic. Theor. Comput. Sci., 50(1), 1–102.

271

[36] Hogan, M., Landau-Feibish, S., Arashloo, M. T., Rexford, J., & Walker, D.

(2022). Modular switch programming under resource constraints. In USENIX Sym-

posium on Networked Systems Design and Implementation (pp. 193–207). Renton,

WA: USENIX Association.

[37] Hogan, M., Loehr, D., Sonchack, J., Landau-Feibish, S., Walker, D., & Rexford,

J. (In Submission). Automated optimization of parameterized data-plane programs.

In Submission.

[38] Hsu, K.-F., Beckett, R., Chen, A., Rexford, J., & Walker, D. (2020). Contra: A

programmable system for performance-aware routing. In USENIX Symposium on

Networked Systems Design and Implementation (pp. 701–721).

[39] Ibanez, S., Antichi, G., Brebner, G., & McKeown, N. (2019). Event-driven packet

processing. In Proceedings of the 18th ACM Workshop on Hot Topics in Networks,

HotNets ’19 (pp. 133–140). New York, NY, USA: Association for Computing Ma-

chinery.

[40] Igarashi, A. & Kobayashi, N. (2005). Resource usage analysis. ACM Trans.

Program. Lang. Syst., 27(2), 264–313.

[41] Jin, X., Li, X., Zhang, H., Soule, R., Lee, J., Foster, N., Kim, C., & Stoica, I.

(2017). NetCache: Balancing key-value stores with fast in-network caching. In

Symposium on Operating System Principles.

[42] Jose, L., Yan, L., Varghese, G., & McKeown, N. (2015). Compiling packet

programs to reconfigurable switches. In USENIX Conference on Networked Systems

Design and Implementation (pp. 103–115). USA: USENIX Association.

[43] JuniperNetworks (2023). Fib compression - optimizing your routing tables.

272

[44] Karpilovsky, E., Caesar, M., Rexford, J., Shaikh, A., & van der Merwe, J. (2012).

Practical Network-Wide Compression of IP Routing Tables. IEEE Transactions

on Network and Service Management, 9(4), 446–458.

[45] Katta, N., Hira, M., Kim, C., Sivaraman, A., & Rexford, J. (2016). Hula:

Scalable load balancing using programmable data planes. In ACM SIGCOMM

Symposium on SDN Research (pp. 1–12).

[46] Kiselyov, Oleg (2022). How ocaml type checker works – or what polymor-

phism and garbage collection have in common. http://okmij.org/ftp/ML/

generalization.html.

[47] Kuka, M., Vojanec, K., Kučera, J., & Benáček, P. (2019). Accelerated DDoS

Attacks Mitigation using Programmable Data Plane. In 2019 ACM/IEEE Sympo-

sium on Architectures for Networking and Communications Systems (ANCS) (pp.

1–3).

[48] Lantz, B., Heller, B., & McKeown, N. (2010). A network in a laptop: Rapid

prototyping for software-defined networks. In ACM SIGCOMM Workshop on Hot

Topics in Networks (pp. 1–6).

[49] Li, Y., Gao, J., Zhai, E., Liu, M., Liu, K., & Liu, H. H. (2022). Cetus: Releasing

P4 programmers from the chore of trial and error compiling. In USENIX Sym-

posium on Networked Systems Design and Implementation (pp. 371–385). Renton,

WA: USENIX Association.

[50] Liu, Z., Namkung, H., Nikolaidis, G., Lee, J., Kim, C., Jin, X., Braverman, V.,

Yu, M., & Sekar, V. (2021). Jaqen: A high-performance switch-native approach

for detecting and mitigating volumetric ddos attacks with programmable switches.

In USENIX Security Symposium.

273

[51] Loehr, D. & Walker, D. (2022). Safe, modular packet pipeline programming.

Proc. ACM Program. Lang., 6(POPL).

[52] Mehta, V., Loehr, D., Sonchack, J., & Walker, D. (2023). Switchlog: A logic

programming language for network switches. In Proceedings of the 25th Interna-

tional Symposium on Practical Aspects of Declarative Languages, PADL ’23 (pp.

180–196).

[53] Milner, R. (1978). A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17(3), 348–375.

[54] Namkung, H., Kim, D., Sekar, V., & Steenkiste, P. (2022). Sketchlib: Enabling

efficient sketch-based monitoring on programmable switches. In USENIX NSDI

2022: USENIX.

[55] Naor, M. & Yogev, E. (2013). Sliding Bloom Filters. In L. Cai, S.-W. Cheng, &

T.-W. Lam (Eds.), Algorithms and Computation (pp. 513–523). Berlin, Heidelberg:

Springer Berlin Heidelberg.

[56] Nelson, T., Ferguson, A. D., Scheer, M. J., & Krishnamurthi, S. (2014). Tierless

programming and reasoning for software-defined networks. In USENIX Networked

Systems Design and Implementation (pp. 519–531).

[57] OCaml (2023). Data types and matching. https://ocaml.org/docs/

data-types. Accessed: 5/24/2023.

[58] P4 Language Consortium (2018a). P414 language specifications.

[59] P4 Language Consortium (2018b). P416 language specifications.

[60] Polakow, J. & Pfenning, F. (1999). Natural deduction for intuitionistic non-

commutative linear logic. In International Conference on Typed Lambda Calculi

and Applications.

274

[61] Pous, D. (2015). Symbolic algorithms for language equivalence and kleene algebra

with tests. SIGPLAN Not., 50(1), 357–368.

[62] Reich, J., Monsanto, C., Foster, N., Rexford, J., & Walker, D. (2013). Modular

sdn programming with pyretic. Technical Reprot of USENIX, (pp.3̃0).

[63] Rétvári, G., Tapolcai, J., Kőrösi, A., Majdán, A., & Heszberger, Z. (2013). Com-

pressing ip forwarding tables: Towards entropy bounds and beyond. SIGCOMM

Comput. Commun. Rev., 43(4), 111–122.

[64] Rifai, M., Huin, N., Caillouet, C., Giroire, F., Pacheco, D. L., Moulierac, J., &

Urvoy-Keller, G. (2014). Too Many SDN Rules? Compress Them with MINNIE.

2015 IEEE Global Communications Conference (GLOBECOM), (pp. 1–7).

[65] Riley, G. F. & Henderson, T. R. (2010). The ns-3 network simulator. In Modeling

and tools for network simulation (pp. 15–34). Springer.

[66] Sánchez, J. & González, A. (2000). Instruction scheduling for clustered vliw

architectures. In Proceedings of the 13th International Symposium on System Syn-

thesis, ISSS ’00 (pp. 41–46). USA: IEEE Computer Society.

[67] Schlesinger, C., Greenberg, M., & Walker, D. (2014). Concurrent NetCore: From

policies to pipelines. In ACM SIGPLAN International Conference on Functional

programming (pp. 11–24).: ACM.

[68] Sengupta, S., Kim, H., & Rexford, J. (2022). Continuous in-network round-trip

time monitoring. In ACM SIGCOMM, SIGCOMM ’22 (pp. 473–485). New York,

NY, USA: Association for Computing Machinery.

[69] Shin, S. W., Porras, P., Yegneswara, V., Fong, M., Gu, G., & Tyson, M. (2013).

Fresco: Modular composable security services for software-defined networks. In

Network & Distributed System Security Symposium.

275

[70] Sivaraman, A., Cheung, A., Budiu, M., Kim, C., Alizadeh, M., Balakrishnan, H.,

Varghese, G., McKeown, N., & Licking, S. (2016). Packet transactions: High-level

programming for line-rate switches. In ACM SIGCOMM (pp. 15–28).

[71] Smolka, S., Eliopoulos, S., Foster, N., & Guha, A. (2015). A fast compiler for

netkat. In Proceedings of the 20th ACM SIGPLAN International Conference on

Functional Programming, ICFP 2015 (pp. 328–341). New York, NY, USA: Associ-

ation for Computing Machinery.

[72] Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., & Saraswat, V. (2006). Com-

binatorial sketching for finite programs. In Architectural Support for Programming

Languages and Operating Systems (pp. 404–415).

[73] Sonchack, J., Loehr, D., Rexford, J., & Walker, D. (2021). Lucid: A language

for control in the data plane. In ACM SIGCOMM, SIGCOMM ’21 (pp. 731–747).

New York, NY, USA: Association for Computing Machinery.

[74] Sonchack, J., Michel, O., Aviv, A. J., Keller, E., & Smith, J. M. (2018). Scaling

Hardware Accelerated Network Monitoring to Concurrent and Dynamic Queries

With *Flow. In USENIX Annual Technical Conference (pp. 823–835).

[75] Sultana, N., Sonchack, J., Giesen, H., Pedisich, I., Han, Z., Shyamkumar, N.,

Burad, S., DeHon, A., & Loo, B. T. (2021). Flightplan: Dataplane disaggregation

and placement for p4 programs. In USENIX Symposium on Networked Systems

Design and Implementation (pp. 571–592).

[76] Tofte, M. & Birkedal, L. (1998). A region inference algorithm. ACM Trans.

Program. Lang. Syst., 20(4), 724–767.

[77] Tofte, M. & Talpin, J.-P. (1997). Region-based memory management. Inf.

Comput., 132(2), 109–176.

276

[78] Vanini, E., Pan, R., Alizadeh, M., Taheri, P., & Edsall, T. (2017). Let it flow:

Resilient asymmetric load balancing with flowlet switching. In USENIX Symposium

on Networked Systems Design and Implementation (pp. 407–420). Boston, MA:

USENIX Association.

[79] Vass, B., Bérczi-Kovács, E., Raiciu, C., & Rétvári, G. (2020). Compiling packet

programs to reconfigurable switches: Theory and algorithms. In P4 Workshop in

Europe (pp. 28–35).

[80] Veksler, V. D., Buchler, N., Hoffman, B. E., Cassenti, D. N., Sample, C., &

Sugrim, S. (2018). Simulations in cyber-security: A review of cognitive modeling

of network attackers, defenders, and users. Frontiers in Psychology, 9, 691.

[81] Voellmy, A., Wang, J., Yang, Y. R., Ford, B., & Hudak, P. (2013). Maple:

Simplifying SDN programming using algorithmic policies. In ACM SIGCOMM,

volume 43 (pp. 87–98).

[82] Wette, P., Dräxler, M., Schwabe, A., Wallaschek, F., Zahraee, M. H., & Karl,

H. (2014). Maxinet: Distributed emulation of software-defined networks. In IFIP

Networking Conference (pp. 1–9).: IEEE.

[83] Wintermeyer, P., Apostolaki, M., Dietmüller, A., & Vanbever, L. (2020). P2GO:

P4 profile-guided optimizations. In ACM SIGCOMM Workshop on Hot Topics

in Networks, HotNets ’20 (pp. 146–152). New York, NY, USA: Association for

Computing Machinery.

[84] Yoo, S., Chen, X., & Rexford, J. (2024). Smartcookie: Blocking large-scale syn

floods with a split-proxy defense on programmable data planes. USENIX Security.

[85] Yu, L., Sonchack, J., & Liu, V. (2022). OrbWeaver: Using IDLE Cycles in Pro-

grammable Networks for Opportunistic Coordination. In Symposium on Networked

Systems Design and Implementation.

277

[86] Zeno, L., Ports, D. R. K., Nelson, J., & Silberstein, M. (2020). SwiShmem: Dis-

tributed shared state abstractions for programmable switches. In ACM SIGCOMM

HotNets Workshop.

[87] Zhang, Q., Ng, K. K., Kazer, C., Yan, S., Sedoc, J., & Liu, V. (2021). MimicNet:

Fast performance estimates for data center networks with machine learning. In

ACM SIGCOMM (pp. 287–304).

[88] Zhang, X., Wu, H., & Xue, J. (2011). An efficient heuristic for instruction

scheduling on clustered vliw processors. In Proceedings of the 14th International

Conference on Compilers, Architectures and Synthesis for Embedded Systems,

CASES ’11 (pp. 35–44). New York, NY, USA: Association for Computing Ma-

chinery.

[89] Zheng, Y., Chen, X., Braverman, M., & Rexford, J. (2022a). Unbiased delay

measurement in the data plane. In SIAM Symposium on Algorithmic Principles of

Computer Systems.

[90] Zheng, Y., Yu, H., & Rexford, J. (2022b). Detecting TCP Packet Reordering in

the Data Plane. ArXiv, abs/2301.00058.

[91] Zhou, Z., Lv, J., Cheng, L., Chen, X., Zhang, T., Huang, Q., Luo, J., Zhu, L.,

Zhang, D., & Wu, C. (2022). SketchGuide: Reconfiguring sketch-based measure-

ment on programmable switches. In IEEE International Conference on Network

Protocols (ICNP) (pp. 1–11).

278

