
38

Safe, Modular Packet Pipeline Programming

DEVON LOEHR, Princeton University, US

DAVID WALKER, Princeton University, US

The P4 language and programmable switch hardware, like the Intel Tofino, have made it possible for network

engineers to write new programs that customize operation of computer networks, thereby improving per-

formance, fault-tolerance, energy use, and security. Unfortunately, possible does not mean easyÐthere are

many implicit constraints that programmers must obey if they wish their programs to compile to specialized

networking hardware. In particular, all computations on the same switch must access data structures in a

consistent order, or it will not be possible to lay that data out along the switch’s packet-processing pipeline. In

this paper, we define Lucid 2.0, a new language and type system that guarantees programs access data in a

consistent order and hence are pipeline-safe. Lucid 2.0 builds on top of the original Lucid language, which is also

pipeline-safe, but lacks the features needed for modular construction of data structure libraries. Hence, Lucid

2.0 adds (1) polymorphism and ordering constraints for code reuse; (2) abstract, hierarchical pipeline locations

and data types to support information hiding; (3) compile-time constructors, vectors and loops to allow for

construction of flexible data structures; and (4) type inference to lessen the burden of program annotations.

We develop the meta-theory of Lucid 2.0, prove soundness, and show how to encode constraint checking as

an SMT problem. We demonstrate the utility of Lucid 2.0 by developing a suite of useful networking libraries

and applications that exploit our new language features, including Bloom filters, sketches, cuckoo hash tables,

distributed firewalls, DNS reflection defenses, network address translators (NATs) and a probabilistic traffic

monitoring service.

CCS Concepts: • Theory of computation → Type structures; • Software and its engineering → Formal

language definitions.

Additional Key Words and Phrases: Network programming languages, P4, PISA, type and effect systems

ACM Reference Format:

Devon Loehr and David Walker. 2022. Safe, Modular Packet Pipeline Programming. Proc. ACM Program. Lang.

6, POPL, Article 38 (January 2022), 28 pages. https://doi.org/10.1145/3498699

1 INTRODUCTION

As industrial networks have grown in size and scale over the last couple of decades, there has been

an inexorable push towards making them more programmable. Doing so allows networks to be

customized to particular tasks or operating environments, and can deliver better response times,

decreased energy usage, superior fault tolerance, or improved security.

P4 (Bosshart et al. [2014]) is one of the outcomes of this push towards programmability. The P4

language allows programmers to not only modify the stateless forwarding behavior of networks (à

la NetKAT (Anderson et al. [2014]) or Frenetic (Foster et al. [2011])), but to write stateful networking

applications that run inside the packet-processing pipelines of networking hardware like the Intel

Tofino (Bosshart et al. [2013]). A plethora of prior work has shown that running applications in

these pipelines can yield tremendous performance benefits: in an environment where nanoseconds

Authors’ addresses: Devon Loehr, Princeton University, US, dloehr@princeton.edu; David Walker, Princeton University, US,

dpw@cs.princeton.edu.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART38

https://doi.org/10.1145/3498699

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3498699
https://doi.org/10.1145/3498699

38:2 Devon Loehr and David Walker

matter, adaptive, P4-based services such as load balancers (Alizadeh et al. [2014]; Hsu et al. [2020];

Katta et al. [2016]), automatic rerouters (Hsu et al. [2020]), and DDoS defenses (Liu et al. [2021])

can react orders of magnitude faster than systems using network controllers hosted on servers.

Indeed, recent work has demonstrated latency reductions of up to 98% in 5G mobile cores (Shah

et al. [2020]), and speedups of over 300X in stateful firewalls (Sonchack et al. [2021]), after moving

applications into hardware pipelines.

However, while P4 makes it possible to write these applications, it does not make it easy: syntac-

tically correct P4 programs regularly fail to compile, because the hardware imposes a collection of

implicit constraints on programs. To achieve both programmability and guaranteed high throughput,

switches like the Tofino have adopted the Protocol-Independent Switch Architecture (PISA), which is

structured as a linear pipeline of reconfigurable packet-processing stages. Packets flow forward

through the stages, with each stage having its own independent memory for storing persistent

information. Since stage 𝑋 cannot access the memory of stage 𝑌 , all computations implemented

on a switch must access data structures in the same order. If one computation accesses 𝐷1 and

then later 𝐷2, and another accesses 𝐷2 then 𝐷1, there is no way to allocate 𝐷1 and 𝐷2 to stages and

compile the computations to hardware.

In this paper, we define Lucid 2.0 (or simply Lucid2), an extension of the original Lucid lan-

guage [Sonchack et al. 2021] (henceforth Lucid1) for programming packet-processing pipelines.

Lucid1 defined a distributed, event-driven programming model for programmable switches, showed

how to develop a number of useful network applications, and provided an optimizing compiler

targeting a subset of P4 that can be compiled to the Tofino. Lucid1 also defined a type system that

ensured data is used in a consistent order. However, the Lucid1 type system was inflexible and did

not support modular programming idioms: it was impossible to implement data structure libraries,

define abstract types and enforce information hiding, or enable most forms of code reuse. Lucid2

amelioriates these deficiencies by allowing users to implement, use, and reuse rich, high-level

libraries for common networking data structures such as (cuckoo) hash tables, sketches, caches,

and Bloom filters, while ensuring they and their uses in client code are pipeline-safe. In other words,

Lucid2 guarantees that all computations touch data in a consistent order, and hence can be laid out

along a pipeline.

To achieve these results, Lucid2 introduces a series of new language and type system features

that together make it possible for users to write modular programs:

• Polymorphism allows safe reuse of functions on data at many pipeline locations, and

ordering constraints guarantee these functions are safe to call.

• Hierarchical locations, which represent abstract pipeline stages, make it possible to define

compound data structures inside modules with abstract types, while hiding the structure of

the data from client code.

• Despite the fact that PISA architectures do not support dynamically allocated memory,

compile-time constructors, vectors and loops make it possible to write functions that

allocate data structures of variable size and operate over them.

• Type inference largely hides static locations and effects from programmers, while a re-

duction from our algebra of hierarchical locations to the SMT theory of arrays allows us to

automate constraint satisfaction and validity checks. Only in module interfaces and at

declarations of mutually recursive event handlers, where constraints act as loop invariants,

do programmers need to explicitly add annotations.

We illustrate the utility of these new features by reimplementing a variety of applications that had

previously been implemented in Lucid1. The Lucid1 implementations were each monolithic and

non-modular, with no reuse of libraries across different programs. In contrast, in Lucid2 we began

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:3

by creating a collection of generic, reuseable libraries for common networking data structures

including cuckoo hash tables, Bloom filters, count-min sketches, and maps. Many of the libraries

include variations with extra features, like the ability to time out and delete stale entries. We

used these libraries to construct several useful stand-alone applications, including a distributed

firewall, a DNS reflection defense, a NAT, and a probabilistic traffic monitoring serviceÐeach of

these applications saw significant benefits in terms of modularity and clarity from being able to

reuse data structures. Only three Lucid1 benchmarks (chain replication of a single array, the RIP

routing protocol, and an automatic rerouting application) were simple enough, or perhaps unusual

enough, that they failed to benefit significantly from modularization.

We also formalize Lucid2’s semantics and prove sound its type system. In the latter case, the

key challenge arises in analyzing the correctness of loops: in order to ensure pipeline safety, the

type system must show that all data accesses during the 𝑖 + 1𝑡ℎ iteration of a loop occur later in the

pipeline than accesses during the 𝑖𝑡ℎ iteration of the loop, for all 𝑖 . To achieve this property, we

show that checking the safety of a finite number of loop iterationsÐthree, to be preciseÐimplies

the safety of an arbitrary number of loop iterations.

Finally, although Lucid2 is built on top of Lucid1, which compiles to the Intel Tofino, there are

other architectures that use reconfigurable pipelinesÐpipelined parallelism is fundamental for

achieving the high throughputs necessary in modern switches. For instance, the Broadcom Trident-

4 (Kalkunte [2019]) and the Pensando Capri (Baldi [2020]) are both alternative architectures for

packet-processing, and others have been proposed (Jeyakumar et al. [2014]; Sivaraman et al. [2016]).

Reconfigurable pipelines have also been used in other domains, such as signal processing (Ebeling

et al. [1996]). Lucid2 and its type system lay a new foundation for this important paradigm.

In summary, Lucid2 is the first language to enable safe, modular programming for pipelined

architectures. In the remainder of the paper, ğ2 provides more background on PISA architectures

and describes Lucid2 and its features by example. ğ3 formalizes the core features of Lucid2, including

its operational semantics and type system. ğ4 develops the meta-theory of Lucid2 and sketches

a proof of soundness. ğ5 describes our implementation and some of the additional challenges

there, including our solution to the constraint solving problem. We also describe the libraries and

applications we have built to date. We discuss related work in ğ6, and conclude in ğ7.

2 KEY IDEAS

This section presents several of the key ideas underlying the design of Lucid2 and its type system.

ğ2.1 provides background on the mechanics of the PISA architectures Lucid2 is designed to program.

ğ2.1, ğ2.2 and ğ2.3 also introduce the basic imperative programming model used by Lucid2. The

ideas in these sections are not new; they are borrowed from Lucid1 (Sonchack et al. [2021]). ğ2.4

through ğ2.7 describe new ideas introduced in this paper: polymorphism and constraints; records

and hierarchical locations; compile-time constructors, vectors, and loops; and type-and-effect

inference.

2.1 Packet Processing Pipelines

Programmability, high and guaranteed line rate, and feasible hardware implementation are the

primary design goals of modern switch chips like the Intel Tofino. We can characterize these

chips, generally, as instances of the Protocol-Independent Switch Architecture (PISA) (Bosshart et al.

[2013]). In such an architecture, when packets arrive at a switch, they are parsed, key header fields

(source IP, destination IP, etc.) are extracted, and the data in these fields is passed to the switch’s

packet-processing pipeline.

The pipeline itself consists of several stages. At a high level of abstraction, each stage has twomain

components: (1) some of stateful memory, which persists across packets, and (2) a match-action

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:4 Devon Loehr and David Walker

✄ �

1 global int g1 = 1; // Global mutable integers persist

2 global int g2 = 7; // across invocations of handlers

3

4 handle simple() {

5 int x = !g1; // Read g1's current value; store in local x

6 int y = x + x;

7 g2 := y; // Read y; store in g2

8 }
✂ ✁

Fig. 1. A simple Lucid program. The body of simple is executed whenever the switch receives a "simple"

event, which may be tied to reception of a packet.

Fig. 2. A 3-stage pipeline that executes the code in Figure 1. Packets enter one-by-one from the left and travel

left-to-right through the stages. Stage 1 contains the persistent state g1 as well as code, executed by an ALU,

that reads that state. Stage 2 uses only temporaries x and y, which flow from one stage to the next, but whose

values do not persist from one packet to the next. Stage 3 contains state g2 and an action to store into g2.

✄ �

1 global int g1 = 1;

2 global int g2 = 2;

3

4 handle simple() {

5 int x = !g1;

6 int y = x + x;

7 g2 := y;

8 }

9

10 // badly() accesses g1 and g2 in a different order from simple()

11 handle badly() {

12 int x = !g2;

13 int y = x + x;

14 g1 := y;

15 }
✂ ✁

Fig. 3. An uncompilable program. Persistent mutable references g1 and g2 cannot be allocated to pipeline

stages because the two handlers access them in opposite orders, generating unsatisfiable ordering constraints.

table, containing a number of rules that each match some set of packets, and, when they match,

execute some action. Actions can involve reading or writing local variables and/or stateful data,

and performing simple arithmetic or other operations such as computing a hash. However, while

header fields of packets and local variables are propagated from stage to stage, stateful memory

can only be accessed in the stage that contains it. Even then, stateful data can be "accessed" only

once per packet1, because packets are forwarded to the next stage immediately upon completion

of the prior stage’s actions. Although several aspects of the pipeline (such as the the amount of

memory in each stage or the possible actions) vary by architecture, they all share this basic form.

1An "access" can involve a read, a simple arithmetic computation, such as an addition, and a write back to stateful memory.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:5

As a point of reference, the Tofino has 12 stages, each containing approximately 1MB of stateful

memory which can be partitioned into at most 4 separate register arrays. Each packet has approxi-

mately 512 bytes of dedicated header space in which local variables and control information are

stored. These numbers are likely to grow as new hardware (such as the Tofino 2 [Intel 2020]) is

released, but the PISA architecture itself is independent of them.

Once a packet has passed through the pipeline, it is forwarded through one of the switch’s ports.

Most of the time, such packets will travel on to other switches or host machines, but sometimes

a switch will use recirculation to send a packet back into the pipeline from which it just came.

Recirculation allows the switch to continue processing the packet, but it is an expensive operationÐ

it cuts directly into the number of packets per second a switch can process and increases the latency

of packets travelling from point A to point B. Hence, it must be used sparingly, typically only on a

very few network control packets, which are responsible for configuration of network behavior.

Lucid2 is designed to program PISA pipelines, providing the veneer of a simple imperative

language on top of the hardware. Figure 1 presents a small program that illustrates a few basic

features of the language using a simplified syntax. The program declares two global variables, g1

and g2 (globals are mutable and their state is persistent across packets), and a user-defined event

handler, triggered when the switch receives the simple event. Events are triggered when particular

packets arrive at the switch. In this case, the simple handler reads from g1 and writes to g2.

Compiling a program to a PISA pipeline involves deciding in which stage each global variable

and computation should reside, while abiding by hardware limitations on the amount of state and

number of actions that fit in a stage. Figure 2 shows one way to compile this program to a 3-stage

pipeline, which we will assume can accommodate a single action per stage. Here, the compiler

places g1 in stage 1 and g2 in stage 3. Stage 2 is used for the addition operation. The program

dependencies determine the pipeline layout rather directly here: g2 := y must take place after y =

x+x, which must occur after x = !g1, and the globals must be allocated in the same stage as the

actions that refer to them.

Compiling high-level computations to hardware is not always as easy as this example suggests.

Figure 3 presents a second program that accesses g1 before g2 in the first handler, and g2 before g1

in the second handler. To lay out both computations on a single pass through a PISA pipeline, we

would have to place g1 before g2 and g2 before g1, which is impossible. One solution would be to

eschew a single pass and use recirculation to implement one of the two functions. However, doing

so adds an enormous (often impractical) cost to packet processing. Hence, rather than introduce

recirculation automatically, our goal is to detect these sorts of problems and provide programmers

with useful source-level feedback for correcting the error.

2.2 Ordering Constraints

Our type system is designed to ensure the following properties.

(1) No stateful data is accessed twice in the same pipeline pass (since the packet moves to the

next stage immediately after accessing the data)

(2) There is some order on global data such that for every pair of data accesses, the data accessed

first appears earlier in the order

These constraints are reminiscent of those imposed by certain substructural type systems (Girard

[1987]; Polakow and Pfenning [1999a]; Polokow and Pfenning [1999]; Walker [2005]). For instance,

Polakow and Pfenning’s ordered type systems (Polakow and Pfenning [1999a]; Polokow and

Pfenning [1999]) provide programmers control over the order in which their data must be accessed.

Such a system, appropriately modified for our domain, might imply many of the constraints we

need, but appears more restrictive than we would like. For example, our system contains loops,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:6 Devon Loehr and David Walker

✄ �

1 const int len = ...;

2 global array<bool> a0 = Array.create(len);

3 global array<bool> a1 = Array.create(len);

4 const int s0 = ...; // seed for first hash table

5 const int s1 = ...; // seed for second hash table

6

7 // add item to bloom filter

8 fun void add(int item) {

9 a0.(hash(s0, item)) := true;

10 a1.(hash(s1, item)) := true;

11 }

12

13 // return true if item in bloom filter

14 fun bool query(int item) {

15 bool b1 = a0.(hash(s0, item));

16 bool b2 = a1.(hash(s1, item));

17 return (b1 and b2);

18 }
✂ ✁

Fig. 4. A basic Bloom filter with m = 2. Functions add and querymay be called from many different handlers.

which require careful reasoning about inequalities that does not appear possible in vanilla ordered

type systems. Moreover, switch hardware permits ordered data to be allocated during compile time

only, which is simpler than the dynamic allocation permitted in standard ordered type systems.

2.3 A Basic Bloom Filter

For the remainder of this section, we will explain Lucid2 through the working example of a

Bloom filter. A Bloom filter is a probabilistic data structure for representing a set of elements,

consisting of 𝑘 boolean arrays of length𝑚, each associated with a hash function. Items are added

to the Bloom filter by processing them with each of the 𝑘 hash functions to produce 𝑘 array indices,

and then setting each index to true in the associated array. To check if an item appears in the data

structure, one hashes that item 𝑘 ways and returns true if and only if all the associated indices are

already set to true. Bloom filters are useful for applications which are willing to trade occasional

imprecision for reduced memory usage, and are often found in network monitoring applications.

Figure 4 shows a simple Lucid2 program that implements a Bloom filter. As Lucid2 type checks

the program, it keeps track of both raw types and locations of global mutable data. For instance,

in this case, a0 is an array of booleans stored at location 0 (because it is the first declaration). We

write a0’s full type as array<bool>@0. Since a1 is declared immediately after a0, a1’s full type is

array<bool>@1. Thanks to Lucid2’s type inference, programmers typically need only write raw

types (as shown in Figure 4) and may drop explicit location annotations.

As Lucid2 checks that a series of statements or expressions is well-formed, it keeps track of where

the computation isÐcalled the current locationÐin a virtual pipeline. Whenever a global variable is

accessed, it first checks if the current location precedes the location of that global variable. If so, it

updates the current location, moving it one location past whichever global variable was accessed.

If not, the program fails to typecheck.

Figure 4 typechecks, but suppose a programmer accidentally permuted the two array accesses

on lines 9 and 10 of the add method, resulting in the following two lines.
✄ �

9 a1.(hash(s1, item)) := true;

10 a0.(hash(s0, item)) := true;
✂ ✁

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:7

In this case, Lucid2 would generate an ordering violation at line 10, since line 10 accesses a0, which

is at location 0, when that location has already been bypassed in the pipeline. The programmer

would then be able to look backwards from line 10, notice that they had already accessed a1 on

line 9, and determine a solution. In this case, simply swapping the offending lines would suffice.

Aside: An alternate design choice. Lucid2 demands that all program components access stateful

data in the order it is declared. If all components consistently used state in some other order, our

system would flag an error even though the program could be compiled. An alternate design could

allow programmers to use data in any order, provided they do so consistently across their whole

program, or provided the system can permute accesses without changing program semantics to

arrive at a consistent order (as was the case in the prior paragraph’s example).

We conjecture this other design is easily achievable and, from a technical perspective, varies

little from our chosen design (we would simply find a satisfying assignment to ordering constraints

rather than check that such constraints are consistent with an a priori ordering). However, we chose

to require that programmers follow declaration order for two reasons: (1) declaration order provides

useful, built-in documentation and (2) it is easier to provide targeted error messages when things

go wrong. Although programmers cannot entirely avoid thinking about state ordering, Lucid2

boils the requirements down to a simple, easy-to-state guideline. When programmers violate this

guideline, Lucid2 can issue a simple message of the form "Line X conflicts with the global order,"

which allows programmers to navigate right to the source of their problem and fix it quickly.

2.4 Polymorphism and Constraints

Unfortunately, the Bloom filter code in Figure 4 is not reusable: The add and query routines operate

over particular arrays, whose locations in the pipeline are fixed. Consequently, programmers must

write new Bloom filter code with separate add and querymethods every time the underlying arrays

or their locations are changed.

To better accommodate code reuse, a first effort might simply parameterize the add and query

methods by the arrays to be used, as is done in the following code.
✄ �

1 fun void add(array<bool> a0, array<bool> a1, int s0, int s1, int item)

2 {

3 a0.(hash(s0, item)) := true;

4 a1.(hash(s1, item)) := true;

5 }
✂ ✁

However, one cannot guarantee the code above is safe. Indeed, the function is only safe when the

location of a0 precedes the location of a1.

To facilitate proofs of safety, we extend our function definitions to admit location polymorphism

and ordering constraints over polymorphic locations. Below, we rewrite our function with appro-

priate constraints, using the special keyword start to denote the location at which the function

begins execution. Within the constraint clause below, we write a0 < a1 to mean that ℓ𝑎0 < ℓ𝑎1,

where ℓ𝑎0 and ℓ𝑎1 are the locations associated with a0 and a1.
✄ �

1 fun void [start <= a0 /\ a0 < a1]

2 add(array<bool> a0, array<bool> a1, int s0, int s1, int item)

3 {

4 a0.(hash(s0, item)) := true;

5 a1.(hash(s1, item)) := true;

6 }
✂ ✁

Since type checking now involves reasoning about symbolic integer locations and inequality

constraints, we deploy an off-the-shelf SMT solver to check satisfiability.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:8 Devon Loehr and David Walker

2.5 Records and Modules

Now our intrepid programmer has the ability to reuse their Bloom filter code when the underlying

state is located at different stages in a pipeline. Still, the representation of the Bloom filter is

apparent and explicitly manipulated by the client codeÐthere is no way to reimplement the filter

(e.g. to improve its accuracy by using three or more arrays) without modifying the client as well.

Figure 5 presents a revised design that uses compound record types and data abstraction to hide the

structure of the Bloom filter implementation from the client. The record type filter represents a

Bloom filter, and the constructor createFilter is a special compile-time function that allocates

memory to create a filter value.

While extending most languages with compound and abstract types is relatively straightforward,

in our case, these extensions have unusual consequences for the structure of the effect system.

During compilation, records must be unboxed (there is no hardware support for them), and their

array fields must be placed in the pipeline, as in Figure 6. Just like top-level globals, we require that

global fields of each record are stored in the order those fields are declared in the record type.

A first, naïve choice for choosing locations for the data might be to house a0 at location ℓ (for

some ℓ) and a1 at location ℓ + 1.2 However, if we do so, then client code that uses a Bloom filter

operation will move forward 𝑘 locations, where 𝑘 is the number of arrays in the filter. In other

words, information about the filter’s underlying implementation will be leaked to the client.

2.5.1 Hierarchical Locations. Our solution is to introduce hierarchical locations, with the structure

of the hierarchy following the structure of the type declarations introduced by the programmer. In

our hierarchy, if a record is allocated at location ℓ then its fields will be nested at locations "within"

ℓ , written as ℓ .0 for the first field, ℓ .1 for the second, ℓ .2 for the third, and so on. Intuitively, the

record’s location is "virtual", and the nested locations which correspond to array types are the "real"

locations that will be allocated along the hardware’s pipeline during compilation.

For example, when a programmer declares a record type holding a pair of arrays, like the one in

Figure 5, each record r will be placed at some virtual location ℓ , and the arrays r.a0 and r.a1 will

be nested underneath it at locations ℓ .0 and ℓ .1, respectively. Some other data structure located

immediately after the record may be positioned at location ℓ + 1. Notice how the location ℓ + 1

reveals nothing about the structure of ℓ . The location ℓ may contain may nested sub-locations and

they in turn may contain more nested sub-locations, or none at all. The client cannot tell.

More generally, our "virtual pipeline" is now an ordered tree of locationsÐFigure 7 presents a

picture of such a memory. The root is a virtual location; each top-level global program variable is a

child of the root; and compound types such as records induce additional nested locations. We refer

to specific locations using paths from the root to other nodes of the tree. For instance, the path

𝑛0.𝑛1 .𝑛2 is read from left-to-right, and chooses the 𝑛𝑖𝑡ℎ child at each step from root to leaf. In the

example of Figure 7, f1 would have location 0, f1.a0 would have location 0.0, and f1.a1 would

have location 0.1. Similarly, f2, f2.a0, and f2.a1 have locations 1, 1.0, and 1.1, respectively.

To prevent ordering errors, the type system must reason about the order that these locations will

be laid out in a physical pipeline. When comparing locations, the ordering used corresponds the

pre-order traversal of the (non-root) nodes of the memory tree. For instance, here is the ordering of

several locations: 0 < 1 < 1.0 < 1.4.7 < 1.5 < 1.5.3 < 2.

The type system must also reason about, relate, and manipulate abstract, universally quantified

locations. It does so via a simple algebra of locations that includes a successor function. Hence,

in general, we may write 𝑆 (ℓ) (or equivalently, ℓ + 1) for the successor of the (possibly abstract)

2Immutable scalars such as the integers s0 and s1 need not be housed in pipeline stages so we need not give them locations.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:9

✄ �

1 module BloomFilter = {

2 // An abstract record type, with definition hidden from module clients

3 abstract type filter = {

4 a0 : array<bool>; // Where should this be stored?

5 a1 : array<bool>; // Depends on the location of the filter object

6 int s0; // These never change, so they don't

7 int s1; // need to be stored in the pipeline

8 }

9

10 // A compile-time function for creating global values.

11 constructor createFilter(int m, int seed1, int seed2) = {

12 a0 = Array.create(m);

13 a1 = Array.create(m);

14 s1 = seed1;

15 s2 = seed2;

16 }

17

18 fun void [start <= bf] add(filter bf, int item) {

19 bf.a0.(hash(bf.s0, item)) := true;

20 bf.a1.(hash(bf.s1, item)) := true;

21 }

22

23 fun bool [start <= bf] query(filter bf, int item){

24 bool b1 = bf.a0.(hash(bf.s0, item));

25 bool b2 = bf.a1.(hash(bf.s1, item));

26 return (b1 and b2);

27 }

28 }

29

30 // Using the constructor

31 global filter f1 = BloomFilter.createFilter(...);

32 global filter f2 = BloomFilter.createFilter(...);
✂ ✁

Fig. 5. An abstract, compound type for Bloom filters.

Fig. 6. Data layout for the two globals in Figure 5. Only the array values appear in the pipelineÐthe seeds

are immutable and do not need to be store in mutable stage memory; the records themselves are unboxed

and compiled away.

location ℓ . Checking satisfiability of constraints involving polymorphic variables is trickier in this

setting, but is still decidable with an SMT encoding we have developed (see ğ5.3).

In our model, the leaf nodes of the tree are precisely the array-type variablesÐthat is, the mutable

globals that must be stored in the pipeline.3 We can linearize our memory model and assign mutable

data to physical pipeline stages in a PISA architecture simply by dropping the non-leaf nodes from

the tree and assigning the leaves to stages in order.

3Arrays do not themselves contain other arrays or mutable references. Memory is flat. There are no pointers.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:10 Devon Loehr and David Walker

Fig. 7. An abstract representation of the memory in Figure 5. The location order is the preorder traversal of

the tree. The ordering of the pipeline in Figure 6 is given by the left-to-right sequence of the leaves.

✄ �

1 module BloomFilter = {

2 // A filter with k arrays

3 abstract type filter<k> = {

4 arrs : array<bool>[k]; // Vector of k arrays of booleans

5 seeds : int[k]; // Vector of k ints

6 }

7

8 // create Bloom Filter with ss -- a vector of k seeds

9 constructor createFilter(int m, int[k] ss) = {

10 arrs = [Array.create(m) for i < k]; // Vector comprehension

11 seeds = ss;

12 }

13

14 fun void [start <= bf] add(filter<k> bf, int item) {

15 for i < k { // Declares a new index i ranging from 0 to k-1 inclusive

16 bf.arrs[i].(hash(bf.seeds[i], item)) := true;

17 }

18 }

19

20 fun bool [start <= bf] query(filter<k> bf, int item) {

21 for i < k {

22 bool b = bf.arrs[i].(hash(bf.seeds[i], item));

23 if (not b) { return false; }

24 }

25 return true;

26 }

27 }
✂ ✁

Fig. 8. A general module for Bloom filters

2.5.2 Typechecking Figure 5. With this new location structure, we have the tools we need to

typecheck our modular Bloom filter. If we have a filter at location ℓ , we assign a0 and a1 the

locations ℓ .0 and ℓ .1, respectively. While the functions add and query manipulate the sublocations

ℓ .0 and ℓ .1, we will avoid revealing those locations to a client by "rounding our location up" at the

end of the function to the successor of the parent location ℓ (namely, ℓ + 1) rather than, say, to

the successor of ℓ .1, (namely, ℓ .(1 + 1) = ℓ .2). From the perspective of a user outside the module,

the add function now simply consumes the filter argument, moving from location ℓ to ℓ + 1Ðall

information about the implementation of the filter type is hidden.

2.6 Vectors

Our Bloom filter implementation has come a long way, but there’s one annoyance leftÐnamely,

all our work has focused on Bloom filters implemented with two arrays (i.e., with𝑚 = 2). If an

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:11

application requires a different memory-accuracy trade-off, it may want to use a Bloom filter

with𝑚 = 3 or𝑚 = 4. Unfortunately, to implement such a filter at this point, one would have to

write an entirely new module with a new type and functions. To address this limitation, we allow

programmers to write variably-sized vectors of values, providing them the flexibility needed to

write a general Bloom filter module as in Figure 8.

Since data-plane programs must ultimately run on the linear switch hardware, which does not

permit looping, we allow only bounded loops of the form "for i < k ..." that can be unrolled

during compilation. In order to avoid out-of-bounds errors, we include the length of a vector in its

type, and allow indexing operations only if the index can be proved to be in bounds. Constraints

generated from an index declaration 𝑖 < 𝑘 suffice for such proofs in our application domain.

Fortunately, adapting the hierarchical locations of the previous section to accommodate vectors

is simple. We can view vectors as nodes in the heap with a variable number of identical children,

and when we specify a child we may do so either with a concrete integer as before, or with a loop

variable (for example, 0.1.𝑖 where 𝑖 is a loop variable). When comparing locations ℓ1 and ℓ2 that

involve variables, we say that ℓ1 < ℓ2 only if that relationship holds for every instantiation of the

variables in ℓ1 and ℓ2. So, for example, 0.i < 1, but 0.i and 0.1 are incomparable.

Loop constraints. Since all our loops are bounded, and include bounds checking, termination is

guaranteed and indexing errors do not occur. However, we do need to ensure that loop bodies will

not result in ordering errors when run multiple times.

To check a loop of the form for i < k { e } starting at location ℓ𝑖𝑛𝑖𝑡 , we must ask:

(1) Can we safely execute the loop body with 𝑖 = 0 and starting at ℓ𝑖𝑛𝑖𝑡?

(2) For all 𝑗 > 0, can we safely execute the loop body with 𝑖 = 𝑗 , starting at the ending location

of the prior iteration?

To demonstrate the necessity of (1), assume we have two globals of type array<bool>[k] named

arr1 and arr2, with locations 1 and 2, respectively, and assume the function access consumes its

argument. Consider the following loop:
✄ �

1 access(arr2[0]);

2 for i < k { access(arr1[i]); }
✂ ✁

At the start of the loop, ℓ𝑖𝑛𝑖𝑡 will be 2.1 (one step past 2.0), and on the first iteration we will

access arr1[0], which has location 1.0. Since 1.0 < 2.1, we run into an ordering error immediately.

We can always detect violations of property (1) this way, by typechecking the loop body with 𝑖 = 0.

Detecting violations of property (2) is trickier. If the loop bound 𝑘 is an unbounded size (e.g. if

the loop is inside a size-polymorphic function), then naïvely we would need to typecheck the loop

body for arbitrarily many iterations, which would require a universally-quantified SMT constraint.

Unfortunately, typechecking recursive event handlers requires proving an implication of constraints,

and it is unclear whether such an implication will wind up being decidable when the constraints

are universally quantified.

Fortunately, there is a better way, which becomes apparent after looking at several "bad" loops.

Consider the following programs (in which the types of arr1 and arr2 vary as necessary):

✄ �

1 for i < k { // Loop (a)

2 access(arr1[0]);

3 }

4
✂ ✁

✄ �

1 for i < k { // Loop (b)

2 access(arr1[i]);

3 access(arr2[i]);

4 }
✂ ✁

✄ �

1 for i < k { // Loop (c)

2 for j < k' {

3 access(arr1[j][i]);

4 } }
✂ ✁

At a glance, they all might seem fine. Loop (a) will begin at location 0, then access location 1

on the first loop. However, on the second loop, it will try to access location 1 again, causing an

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:12 Devon Loehr and David Walker

error. Loop (b), on the other hand, will first access locations 1.0 and 2.0, both of which are in order.

However, on the second iteration, it will try to "go back" and access location 1.1, which is less than

2.0. Finally, loop (c) will execute the outer loop once, ending at location 1.k’.1, but on the second

iteration it will try to access location 1.0.1, which is less than 1.k’.1 (if k’ > 0).

The common thread in all these examples is that despite the loops having several different forms,

each of the errors occurred very quickly (within a few iterations of the outermost loop). This is not

a coincidence; we have proved that, given certain minor restrictions, every "bad" loop will fail in at

most three iterations. In other words, if the loop doesn’t violate ordering constraints in the first

three iterations, it will not do so in any future iteration.

This insight allows us to reduce property (2) from a universal statement to a finite one. Rather

than having to reason about every iteration of the loop simultaneously, it suffices to only check

the first three. This is a significant victory, and our type system leverages it to turn a potentially

undecidable problem into an obviously-decidable one.

2.7 Location Inference

We have now extended our language and type system to handle a fully general Bloom filter module,

which is parametric in both 𝑚 and 𝑘 . However, this did not come entirely without cost ś it is

only through location inference that we have avoided leaving cumbersome location annotations

throughout the program. Inference is crucial for real programs, since it allows the programmer to

think at a high level ś rather than reasoning about the low-level details of the effect system, they

can maintain a high-level abstraction that "global variables must be used in declaration order".

To support inference, the location grammar we use is carefully designed to have a minimal

set of simple constructors: zero (0) and successor (S(ℓ)) constructors to represent integers, and

constant/variable projection operators for record and vector entres (ℓ .0 and ℓ .𝑖). This choice means

that standard unification algorithms (Milner [1978]) can be directly applied to infer both types

and locations. Moreover, we can infer constraints for each expression and function, and for the

program as a whole, by collecting them as we walk through the program.

In this way, we have almost entirely eliminated locations from the surface syntax of Lucid2.

The exceptions are in module interfaces, where we do not have function bodies available to run

inference, and in mutually recursive event handlers (see ğ5.2). Through location inference, Lucid2

programmers are provided with the easy, high level abstraction of "use global variables in the order

they are declared", and are not forced to learn a new system before they can continue writing code.

3 LANGUAGE AND TYPE SYSTEM

In this section, we present the formal definition of Lucid2, an extension of an idealized subset of

Lucid1 designed to illustrate and prove correct the central elements of our type system.

Lucid2’s type system (see Figure 9 for the syntax) contains a collection of compile-time integers,

which we refer to as sizes. These sizes are used for describing vector lengths, and may appear in

locations. They include constants 𝑛 (a natural number) as well as two different sorts of identifiers,

𝑏 and 𝜅 . We refer to 𝑏 as a bounded sizeÐour type system ensures that such identifiers will always

appear with a constraint 𝑏 < 𝑘 . Such constraints make vector bounds checking straightforward.

We refer to identifiers 𝜅 as unbounded sizes.

Lucid2’s type system also includes locations, which describe where in a pipeline a piece of

persistent memory is stored. The metavariable 𝑧 ranges over concrete locations whereas ℓ ranges

over symbolic locations. The first location in a pipeline is 0. The location 𝑆 (𝑧) follows the location 𝑧.

Locations may also be hierarchical. Hence, if 𝑧 is a location then 𝑧.0 is the first location within 𝑧 and

𝑆 (𝑧.0) is the next location within 𝑧. Symbolic locations can be location variables 𝛼 or hierarchical

locations such as ℓ .𝑏 where 𝑏 is an index into ℓ .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:13

⟨𝜄 (indices)⟩ ::= 𝑛 | 𝑏

⟨k (sizes)⟩ ::= 𝜄 | 𝜅

⟨𝑧 (concrete locations)⟩ ::= 0 | S(𝑧) | 𝑧.0

⟨ℓ (locations)⟩ ::= 0 | 𝛼 | S(ℓ) | ℓ .0 | ℓ .𝑏

⟨𝐶 (constraints)⟩ ::= true | ℓ ≤ ℓ | 𝐶 ∧ 𝐶

⟨𝑇 (base types)⟩ ::= Bool | Unit

⟨𝑡 (raw types)⟩ ::= 𝑇 | addr(𝑇) | (𝑡 , 𝑡) | vector(𝑡 , 𝑘) | ∀𝜅, 𝛼 .𝐶 ⇒ (𝜏, ℓ) → (𝜏, ℓ)

⟨𝜏 (types)⟩ ::= t⟨ℓ⟩

⟨𝑣 (values)⟩ ::= () | true | false | fun [𝜅, 𝛼] (𝑥 : 𝜏, ℓ) → 𝑒 | addr(𝑧) | (𝑣 , 𝑣) | vector(𝑣 , . . . , 𝑣)

⟨𝑒 (expressions)⟩ ::= 𝑣 | 𝑥 | (𝑒 , 𝑒) | fst 𝑒 | snd 𝑒 | vector(𝑒 , . . . , 𝑒) | 𝑒[𝜄] | [𝑒 for 𝑏 < 𝑘] | !𝑒 | 𝑒 := 𝑒 |

let 𝑥 = 𝑒 in 𝑒 | if 𝑒 then 𝑒 else 𝑒 | for 𝑏 < 𝑘 do 𝑒 | 𝑒[𝑘 , ℓ] 𝑒

Fig. 9. Formal Lucid2 Syntax

Constraints 𝐶 are conjunctions of inequalities ℓ1 ≤ ℓ2, which describe the order that locations

must appear in memory. There will be more on constraints, locations and operations over them in

the following subsection.

Lucid2 contains Bool and Unit base types as well as raw types that include mutable references

(addr(T)), vectors with elements of type 𝑡 and length 𝑘 (vector(𝑡, 𝑘)), and pairs (𝑡1, 𝑡2). There

are no references to references (the hardware only admits "flat" data structures); this is why we

distinguish "raw types" and "base types." Vectors will be unrolled and their associated contents

allocated to stages at compile time; their length 𝑘 is a compile-time computed value. Types proper

(𝜏) are pairs of a raw type and the virtual pipeline stage that stores the value of that raw type, written

𝑡 ⟨ℓ⟩. For simplicity and uniformity in the system, base types like Bool and Unit are associated

with a location even though it is not necessary to do so (the stage of a base type winds up playing

no role in the system)Ðonly persistent mutable data need be allocated to stage memory.

In general, functions have a type of the form ∀𝜅, 𝛼 .𝐶 ⇒ (𝜏1, ℓ1) → (𝜏2, ℓ2). These functions are

non-recursive, call-by-value functions and will be fully inlined at compile time (the hardware does

not have mechanisms for implementing a general purpose function call). They are polymorphic

in the sizes (𝜅) that parameterize vectors, and in locations (𝛼). Function preconditions 𝐶 are a

collection of inequality constraints that must be satisfied prior to calling the function. Functions

take an argument with type 𝜏1 and start at location ℓ1 in the pipeline, returning a result with type

𝜏2 and completing at location ℓ2 in the pipeline. Our implementation contains type-polymorphic

functions as well; they are not hard to formalize, but for simplicity we elide them here.

There are values (𝑣) for each type. Notice that function values do not specify required function

constraints 𝐶Ðthey will be inferred during typechecking. Expressions contain many standard

forms. We often use 𝑒1; 𝑒2 as an abbreviation for let 𝑥 = 𝑒1 in 𝑒2 when 𝑥 does not appear free in 𝑒2.

Components of a pair are projected using the fst and snd operators. Vector projection is written

𝑒 [𝜄]. The expression !𝑒 reads from the address 𝑒 and 𝑒1 := 𝑒2 writes the value of 𝑒2 to the address 𝑒1.

A vector comprehension [𝑒 for 𝑏 < 𝑘] generates a vector of length 𝑘 with 𝑖𝑡ℎ component 𝑒 [𝑖/𝑏].

The construction for 𝑏 < 𝑘 do 𝑒 iterates 𝑘 times over the body, replacing 𝑏 with 𝑖 in the 𝑖𝑡ℎ iteration.

Finally 𝑒1 [𝑘, ℓ]𝑒2 calls function 𝑒1 with size vector 𝑘 , location vector ℓ and value 𝑒2 as arguments.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:14 Devon Loehr and David Walker

We define capture-avoiding substitution in the usual way, and, for instance, use the notation

𝑒 [ℓ/𝛼] for the expression 𝑒 with all free occurrences of 𝛼 replaced with ℓ . We substitute vectors

of terms (ℓ) for vectors of variables (𝛼) using the notation 𝑒 [ℓ/𝛼]. Analogous notation is used to

denote other sorts of substitutions. We also treat expressions as equivalent if they differ only in the

names of bound variables, which we refer to as "alpha-renaming".

3.1 Locations

Location Representations. Locations (ℓ) denote (hierarchical) pipeline stages. We have defined the

syntax of location expressions (see Figure 9) via an algebra that involves a successor function 𝑆 (ℓ),

which denotes the location after ℓ . However, an expression like 𝑆 (𝑆 (𝑆 (0.0).𝑘)) is challenging to

understand, and sometimes inconvenient technically (though other times it is quite convenient,

especially for unification-based type inference, which is why we chose it). There is an isomorphic

notation as a (non-empty) list of symbolic natural numbers. Such lists have the following form:

⟨𝐿 (list location)⟩ ::= 𝜄 + 𝑛 | 𝛼 + 𝑛 | 𝐿.(𝜄 + 𝑛)

The following function 𝑓 converts the standard representation of locations ℓ into a list-based

representation 𝐿.

𝑓 (0) = 0 𝑓 (𝛼) = 𝛼 𝑓 (ℓ .𝜄) = 𝑓 (ℓ).𝜄 𝑓 (𝑆 (ℓ)) =

{
𝐿.(𝜄 + 𝑛 + 1) if 𝑓 (ℓ) = 𝐿.(𝜄 + 𝑛)

𝑓 (ℓ) + 1 otherwise

For example, if we apply 𝑓 to 𝑆 (𝑆 (𝑆 (0.0) .𝑖)) we get the list 0.1.(𝑖 + 2). We use standard list syntax to

refer to elements; in our previous example, the head would be 0 and the tail would be 1.(𝑖 + 2). The

function 𝑓 is bijective, so either location syntax contains the same information. In a slight abuse

of notation, from this point forward, we will implicitly convert locations back and forth between

representations, using whichever is most convenient at the time. We will use the metavariable ℓ to

range over effects regardless of the representation.

Location Ordering. When location ℓ1 occurs earlier in a pipeline than ℓ2, we write ℓ1 < ℓ2. In

general, ℓ1 < ℓ2 is defined (using the list-based representation of locations) as follows: ℓ1 < ℓ2 iff:

(1) ℓ1 is an empty list and ℓ2 is a non-empty list4, or

(2) hd ℓ1 < hd ℓ2, or

(3) hd ℓ1 = hd ℓ2 and tl ℓ1 < tl ℓ2

If either list contains variables (𝛼s, 𝜅s, or 𝑏s), we say ℓ1 < ℓ2 if and only if that relationship holds

for all possible instantiations of the variables. That is, we would have 0.0 < 0.(𝑖 + 1), but 0.1 and 0.𝑖

would be incomparable.

Location Rounding. When processing symbolic locations, we sometimes wish to jump forward to

a location guaranteed to come after the symbolic location. For example, given the location 0.0.𝑏, we

may want to jump to 0.1, which is "ahead" of (i.e. greater than) 0.0.𝑏, for all 𝑏. We call this operation

rounding, and write it round(ℓ, 𝑏).

We define round in terms of another function drop, which simply drops all entries after the first

instance of 𝑏 it encounters. Below, and elsewhere, we use the notation 𝑏 ∉ ℓ to indicate that ℓ does

not contain any instances of 𝑏.

round(ℓ, 𝑏) =

{
ℓ 𝑏 ∉ ℓ

𝑆 (drop(ℓ, 𝑏)) otherwise

4Although the output of 𝑓 will never be empty, we may generate an empty list while checking inequality by use of the tl

operator.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:15

where drop(ℓ, 𝑏) = ℓ if 𝑏 ∉ ℓ , and otherwise

• drop(𝑆 (ℓ), 𝑏) = drop(ℓ, 𝑏)

• drop(ℓ .0, 𝑏) = drop(ℓ, 𝑏)

• drop(ℓ .𝑏, 𝑏) = drop(ℓ, 𝑏)

• drop(ℓ .𝑏 ′, 𝑏) = drop(ℓ, 𝑏)

Location Well-formedness. The predicate nri(ℓ, 𝑏) is true when ℓ contains no more than one

instance of 𝑏. The predicate nri(ℓ) is true when ℓ contains no more than one instance of any single

𝑏. Finally, nri(𝐶) is true when all locations ℓ appearing in 𝐶 satisfy nri(ℓ).

Constraints. We write 𝐶 ⇒ 𝐶 ′ to mean that 𝐶 implies 𝐶 ′, and we write ⊨ 𝐶 when 𝐶 is validÐi.e.,

for all well-typed substitutions of values for variables, 𝐶 is satisfied.

3.2 Pipeline Semantics

Our operational model captures execution of expressions on an abstract pipelined processor. In this

model, computations must be organized so that they access memory locations in order, possibly

skipping over some of the locations they do not need to access. Immediately after a computation

accesses a location, the state of the machine is advancedÐeach location is accessed at most once.

In a real PISA architecture, such as Intel’s Tofino chip, a single atomic action may involve several

operations, such as a read, a conditional test and a write to the same state that was read from, but

successive atomic actions may not touch the same state. Augmenting our machine model with

additional primitives to model such compound operations is straightforward. The abstraction we

present here, with its simplified atomic actions, captures the essence of such computations.

More formally, the states of our abstract machine are triples (𝑀,𝑧, 𝑒), where 𝑀 is a pipelined

memory, 𝑧 is our current location in the memory, and 𝑒 is the expression to execute. A pipelined

memory is a partial mapping from concrete locations to values.

Figure 10 presents selected rules from the small-step operational semantics of these machines as

a relation with the form (𝑀,𝑧, 𝑒) → (𝑀 ′, 𝑧 ′, 𝑒 ′). The complete semantics appears in appendix A of

the auxiliary archive.

The most interesting rules are Deref-2 and Update-3. Given that the current location is 𝑧 and

the computation requests a read from address 𝑧𝑒 , Deref-2 states that the machine skips forward to

𝑧𝑒 (which must be higher in the ordering than 𝑧), reads the value in memory at that location, and

then advances the current location to 𝑆 (𝑧𝑒). Update-3 is similarÐ the machine skips forward from

𝑧 to 𝑧𝑒 , writes to 𝑧𝑒 and then moves forward to the successor location 𝑆 (𝑧𝑒).

There are a number of ways such stateful computations can "go wrong." The location 𝑧𝑒 might

not exist. If it does, it might not be higher in the ordering than the current location 𝑧 (i.e., we

might have already passed it in the pipeline). Our language type system will have to present such

scenarios from arising.

Readers will also want to examine the operational rules for vectors and loops. In particular, at

run time, a loop bounded by 𝑛 may be unrolled to 𝑛 copies of its body. A key goal of the type system

will be to prove such an unrolling is safeÐthat execution of 𝑛 copies of the loop body in sequence

will not cause an ordering error.

3.3 Type Checking

The central goal of the type system is to ensure that the stages of the pipeline are accessed in

order, though there are auxiliary goals as well, such as ensuring that vectors are not indexed out of

bounds and that operations are applied to arguments of appropriate type.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:16 Devon Loehr and David Walker

Deref-1

𝑀,𝑧, 𝑒 → 𝑀 ′, 𝑧 ′, 𝑒 ′

𝑀,𝑧, !𝑒 → 𝑀 ′, 𝑧 ′, !𝑒 ′

Deref-2

𝑧 ≤ 𝑧𝑒

𝑀,𝑧, !addr(𝑧𝑒) → 𝑀, 𝑆 (𝑧𝑒), 𝑀 [𝑧𝑒]

Update-1

𝑀,𝑧, 𝑒1 → 𝑀 ′, 𝑧 ′, 𝑒 ′1

𝑀,𝑧, 𝑒1 := 𝑒2 → 𝑀 ′, 𝑧 ′, 𝑒 ′1 := 𝑒2

Update-2

𝑀,𝑧, 𝑒 → 𝑀 ′, 𝑧 ′, 𝑒 ′

𝑀,𝑧, 𝑣 := 𝑒 → 𝑀 ′, 𝑧 ′, 𝑣 := 𝑒 ′

Update-3

𝑧 ≤ 𝑧𝑒

𝑀,𝑧, addr(𝑧𝑒) := 𝑣 → 𝑀 [𝑧𝑒 := 𝑣], 𝑆 (𝑧𝑒), ()

Vector

𝑀,𝑧, 𝑒0 → 𝑀 ′, 𝑧 ′, 𝑒 ′0

𝑀,𝑧, vector(𝑣0, . . . , 𝑣𝑛, 𝑒0, . . . , 𝑒𝑚) → 𝑀 ′, 𝑧 ′, vector(𝑣0, . . . , 𝑣𝑛, 𝑒
′
0, . . . , 𝑒𝑚)

Index-1

𝑀,𝑧, 𝑒 → 𝑀 ′, 𝑧 ′, 𝑒 ′

𝑀,𝑧, 𝑒 [𝑛] → 𝑀 ′, 𝑧 ′, 𝑒 ′[𝑛]

Index-2

𝑛 ≤ 𝑚

𝑀, 𝑧, vector(𝑣0, . . . , 𝑣𝑚) [𝑛] → 𝑀,𝑧, 𝑣𝑛

Loop

𝑀,𝑧, for 𝑏 < 𝑛 do 𝑒 → 𝑀,𝑧, 𝑒 [0/𝑏]; ...; 𝑒 [𝑛 − 1/𝑏]; ()

Comp

𝑀,𝑧, [𝑒 for 𝑏 < 𝑛] → 𝑀,𝑧, vector(𝑒 [0/𝑏], . . . , 𝑒 [𝑛 − 1/𝑏])

App-1

𝑀,𝑧, 𝑒1 → 𝑀 ′, 𝑧 ′, 𝑒 ′1

𝑀,𝑧, 𝑒1 [𝑘, ℓ] 𝑒2 → 𝑀 ′, 𝑧 ′, 𝑒 ′1 [𝑘, ℓ] 𝑒2

App-2

𝑀,𝑧, 𝑒2 → 𝑀 ′, 𝑧 ′, 𝑒 ′2

𝑀,𝑧, 𝑣1 [𝑘, ℓ] 𝑒2 → 𝑀 ′, 𝑧 ′, 𝑣1 [𝑘, ℓ] 𝑒
′
2

App-3

𝑣1 = fun [𝜅, 𝛼] (𝑥 : 𝜏, ℓ) → 𝑒𝑏𝑜𝑑𝑦

𝑀,𝑧, 𝑣1 [𝑘, ℓ] 𝑣2 → 𝑀,𝑧, 𝑒𝑏𝑜𝑑𝑦 [𝑣2/𝑖𝑑] [ℓ/𝛼] [𝑘/𝜅]

Fig. 10. Pipeline Semantics

3.3.1 Typing Environments. The typing environment, Ω = (G,Δ,K, Γ), consists of:

• G, the global persistent state, a partial map from concrete locations 𝑧 to base types;

• Δ, a set of location and unbounded size variables (𝛼s and 𝜅s) that are currently in scope;

• K, a mapping from bounded sizes 𝑏 to their upper bound, a size (with K written as a sequence

of inequalities 𝑏1 < 𝑘1, . . . , 𝑏𝑛 < 𝑘𝑛);

• Γ, a mapping from value identifiers to types;

We often refer to part of the environment using dot notation (e.g., Ω.G). We use the notation

Ω.(...) to denote Ω with one of its fields replaced by the body of the parentheses, e.g. Ω.(Δ ∪ Δ
′)

replaces Δ with Δ ∪ Δ
′. We use the metavariable Σ to range over environments in which all but the

first entry are empty; that is, Σ is an environment with the form (G, ∅, ∅, ∅).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:17

3.3.2 Well-Formedness. The locations, sizes and types manipulated by the type checker must be

well-formed, that is, any free variables must be declared in the type checking environment. We

write Δ,K ⊢ 𝑘 and Δ,K ⊢ ℓ when the free variables of 𝑘 and ℓ are contained in Δ and the domain of

K. We say K is well-formed with respect to Δ, written Δ ⊢ K under the following conditions.

Δ ⊢ ∅

Δ ⊢ K 𝑏 ∉ Dom(K) Δ,K ⊢ 𝑘

Δ ⊢ K, 𝑏 < 𝑘

We use similar notation (e.g., Δ,K ⊢ 𝑡 , Δ,K ⊢ 𝜏 , and Δ,K ⊢ Γ) to describe well-formedness of other

objects. Likewise, we write Ω ⊢ 𝑘 when Ω.Δ,Ω.K ⊢ 𝑘 and again similarly for other objects. The

formal definition is standard; a complete set of well-formedness rules appears in appendix B in the

auxiliary archive.

We impose additional well-formedness conditions on function types. The conditions represent

useful properties of the type system, which we wish to ensure are respected by any type annotations

in the program. The conditions are not strictly necessary Ð allowing programs with ill-formed

type annotations would not violate soundness Ð but enforcing the conditions allows us to prove

properties of the system modularly.

Definition 3.1 (Well-Formed Types). If 𝑡 = fun ∀𝜅, 𝛼 .𝐶𝑓 ⇒ (𝜏𝑖𝑛, ℓ𝑖𝑛) → (𝜏𝑜𝑢𝑡 , ℓ𝑜𝑢𝑡), in order to

show Ω ⊢ 𝑡 we additionally require that

• (monotonicity) 𝐶𝑓 implies the constraint ℓ𝑖𝑛 ≤ ℓ𝑜𝑢𝑡 ; that is 𝐶𝑓 ⇒ ℓ𝑖𝑛 ≤ ℓ𝑜𝑢𝑡 , and

• (well-constrained) For every atomic constraint 𝑥 ≤ 𝑦 in 𝐶𝑓 , 𝐶𝑓 ⇒ ℓ𝑖𝑛 ≤ 𝑥 ≤ 𝑦 ≤ ℓ𝑜𝑢𝑡 .

We impose an additional well-formedness condition on G as well. Intuitively, G represents the

locations in memory where values are stored; that is, G should contain entries for each leaf node in

the heap. For example, a G representing the heap in figure 7 would have four entries: 0.0, 0.1, 1.0,

and 1.1. Our well-formedness condition requires that no entry in G is a parent or child of another

entry. If G did contain two entries, one a parent of the other, then intuitively the data in those two

entries would "overlap." Such constructions do not conform to our mental model of how heaps

should be structured and do not arise in practice, though admitting such artificial structures would

not actually compromise the soundness of the system.

Definition 3.2 (Well-Formed Globals). A global map G is well-formed, written ⊢ G, if for any two

concrete locations 𝑧1, 𝑧2 where 𝑧1 is a strict prefix of 𝑧2, at most one of G[𝑧1],G[𝑧2] exists.

3.3.3 Constructing Global Maps. In the rest of this paper, we assume that global maps G are simply

handed to us. However, when checking real programs, we must construct the maps ourselves.

Fortunately, we can do so easily by processing global declarations one-by-one at the beginning of

the program. For example, to construct the map for a program that begins with
✄ �

1 global int g1 = ...;

2 global (int, bool) g2 = ...;

3 global int[4] g3 = ...;
✂ ✁

we would add entries for the locations 0, 1.0, 1.1, 2.0, 2.1, 2.2, and 2.3. Notice that this map adheres

to our well-formedness condition.

3.3.4 Expression Typing. The typing judgement for expressions has the form Ω, ℓ𝑖𝑛 ⊢ 𝑒 : 𝜏, ℓ𝑜𝑢𝑡 ,𝐶 .

Here, 𝜏 is the type of expression 𝑒 , ℓ𝑖𝑛 denotes our place in the pipeline prior to execution of 𝑒 ,

while ℓ𝑜𝑢𝑡 denotes our place in the pipeline after execution of 𝑒 .𝐶 contains any ordering constraints

required for 𝑒 to be safe to execute. Figures 11 and 12 present the typing rules.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:18 Devon Loehr and David Walker

Unit

Ω ⊢ ℓ ′

Ω, ℓ ⊢ () : Unit⟨ℓ ′⟩, ℓ, true

True

Ω ⊢ ℓ ′

Ω, ℓ ⊢ true : Bool⟨ℓ ′⟩, ℓ, true

False

Ω ⊢ ℓ ′

Ω, ℓ ⊢ false : Bool⟨ℓ ′⟩, ℓ, true

Addr

Ω.G[𝑧] = 𝑇

Ω, ℓ ⊢ addr(𝑧) : addr(𝑇)⟨𝑧⟩, ℓ, true

Var

Ω.Γ [𝑖𝑑] = 𝜏

Ω, ℓ ⊢ 𝑖𝑑 : 𝜏, ℓ, true

Pair

Ω, ℓ0 ⊢ 𝑒1 : 𝑡1⟨ℓ .0⟩, ℓ1,𝐶1 Ω, ℓ1 ⊢ 𝑒2 : 𝑡2⟨ℓ .1⟩, ℓ2,𝐶2

Ω, ℓ0 ⊢ (𝑒1, 𝑒2) : (𝑡1, 𝑡2)⟨ℓ⟩, ℓ2,𝐶1 ∧𝐶2

Fst

Ω, ℓ0 ⊢ 𝑒 : (𝑡1, 𝑡2)⟨ℓ⟩, ℓ1,𝐶1

Ω, ℓ0 ⊢ fst 𝑒 : 𝑡1⟨ℓ .0⟩, ℓ1,𝐶1

Snd

Ω, ℓ0 ⊢ 𝑒 : (𝑡1, 𝑡2)⟨ℓ⟩, ℓ1,𝐶1

Ω, ℓ0 ⊢ snd 𝑒 : 𝑡2⟨ℓ .1⟩, ℓ1,𝐶1

Let

Ω, ℓ0 ⊢ 𝑒1 : 𝜏1, ℓ1,𝐶1 Ω.(Γ [𝑖𝑑 := 𝜏1]), ℓ1 ⊢ 𝑒2 : 𝜏2, ℓ2,𝐶2

Ω, ℓ0 ⊢ let 𝑖𝑑 = 𝑒1 in 𝑒2 : 𝜏2, ℓ2,𝐶1 ∧𝐶2

If-left

Ω, ℓ0 ⊢ 𝑒1 : Bool⟨ℓ⟩, ℓ1,𝐶1 Ω, ℓ1 ⊢ 𝑒2 : 𝜏, ℓ2,𝐶2 Ω, ℓ1 ⊢ 𝑒3 : 𝜏, ℓ3,𝐶3 ℓ2 ≤ ℓ3

Ω, ℓ0 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏, ℓ3,𝐶1 ∧𝐶2 ∧𝐶3

If-right

Ω, ℓ0 ⊢ 𝑒1 : Bool⟨ℓ⟩, ℓ1,𝐶1 Ω, ℓ1 ⊢ 𝑒2 : 𝜏, ℓ2,𝐶2 Ω, ℓ1 ⊢ 𝑒3 : 𝜏, ℓ3,𝐶3 ℓ3 ≤ ℓ2

Ω, ℓ0 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏, ℓ2,𝐶1 ∧𝐶2 ∧𝐶3

Abs

(G,Δ,K, Γ) = Ω

Δ
′
= Ω.Δ ∪ 𝜅 ∪ 𝛼 Δ

′,K ⊢ 𝜏𝑖𝑛, ℓ𝑖𝑛 (G,Δ′,K, Γ [𝑖𝑑 := 𝜏𝑖𝑛]), ℓ𝑖𝑛 ⊢ 𝑒 : 𝜏𝑜𝑢𝑡 , ℓ𝑜𝑢𝑡 ,𝐶

𝑡𝑓 = ∀𝜅, 𝛼 .𝐶 ⇒ (𝜏𝑖𝑛, ℓ𝑖𝑛) → (𝜏𝑜𝑢𝑡 , ℓ𝑜𝑢𝑡) Ω ⊢ ℓ ′ Ω ⊢ 𝑡𝑓

Ω, ℓ ⊢ fun [𝜅, 𝛼] (𝑖𝑑 : 𝜏𝑖𝑛, ℓ𝑖𝑛) → 𝑒 : 𝑡𝑓 ⟨ℓ
′⟩, ℓ, true

App

Ω ⊢ 𝑘, ℓ Ω, ℓ0 ⊢ 𝑒1 : 𝑡𝑓 ⟨ℓ
′⟩, ℓ1,𝐶1

𝑡𝑓 = ∀𝜅, 𝛼 .𝐶𝑓 ⇒ (𝜏𝑖𝑛, ℓ𝑖𝑛) → (𝜏𝑜𝑢𝑡 , ℓ𝑜𝑢𝑡) Ω, ℓ1 ⊢ 𝑒2 : 𝜏𝑖𝑛 [ℓ/𝛼] [𝑘/𝜅], ℓ2,𝐶2

Ω, ℓ0 ⊢ 𝑒1 [𝑘, ℓ] 𝑒2 : 𝜏𝑜𝑢𝑡 [ℓ/𝛼] [𝑘/𝜅], ℓ𝑜𝑢𝑡 [ℓ/𝛼] [𝑘/𝜅],𝐶1 ∧𝐶2 ∧𝐶𝑓 [ℓ/𝛼] [𝑘/𝜅] ∧ ℓ2 ≤ ℓ𝑖𝑛 [ℓ/𝛼] [𝑘/𝜅]

Fig. 11. Expression Typing: Values, Conditionals, Functions

Part 1: Values, Functions, and Conditionals. Figure 11 presents the rules for values, variables,

pairs, functions, let and if statements. Notice that the beginning and ending locations for values

are always the sameÐthey have no effect on the state of the pipeline. For uniformity, base types

(Unit and Bool), are associated with a location ℓ ′. However, these locations are artificialÐonly

mutable globals need be assigned a stage for storageÐand hence the location assigned may be

arbitrary. On the other hand, the global stored at address addr(𝑧) (see rule Addr) is given a type

that includes its location. Values may appear anywhere and hence never directly give rise to any

ordering constraints (the generated constraints 𝐶 are always simply true).

Pairs, let expressions and if statements all involve execution of multiple expressions, and may see

the current pipeline location advance from ℓ0 to ℓ1 to ℓ2, etc., as subexpressions are executed. The

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:19

Deref

Ω, ℓ0 ⊢ 𝑒 : addr(𝑇)⟨ℓ2⟩, ℓ1,𝐶 Ω ⊢ ℓ ′

Ω, ℓ0 ⊢!𝑒 : 𝑇 ⟨ℓ
′⟩, 𝑆 (ℓ2),𝐶 ∧ ℓ1 ≤ ℓ2

Update

Ω, ℓ0 ⊢ 𝑒1 : addr(𝑇)⟨ℓ3⟩, ℓ1,𝐶1 Ω, ℓ1 ⊢ 𝑒2 : 𝑇 ⟨ℓ⟩, ℓ2,𝐶2 Ω ⊢ ℓ ′

Ω, ℓ0 ⊢ 𝑒1 := 𝑒2 : Unit⟨ℓ
′⟩, 𝑆 (ℓ3),𝐶1 ∧𝐶2 ∧ ℓ2 ≤ ℓ3

Vector

Ω, ℓ0 ⊢ 𝑒1 : 𝑡 ⟨ℓ𝑣 .0⟩, ℓ1,𝐶1 · · · Ω, ℓ𝑛−1 ⊢ 𝑒𝑛 : 𝑡 ⟨ℓ𝑣 .(𝑛 − 1)⟩, ℓ𝑛,𝐶𝑛

Ω, ℓ0 ⊢ vector(𝑒1, . . . , 𝑒𝑛) : vector(𝑡, 𝑛)⟨ℓ𝑣⟩, ℓ𝑛,𝐶1 ∧ · · · ∧𝐶𝑛

Index-const

Ω, ℓ0 ⊢ 𝑒 : vector(𝑡, 𝑛
′)⟨ℓ⟩, ℓ1,𝐶 𝑛 < 𝑛′

Ω, ℓ0 ⊢ 𝑒 [𝑛] : 𝑡 ⟨ℓ .𝑛⟩, ℓ1,𝐶

Index-var

Ω, ℓ0 ⊢ 𝑒 : vector(𝑡, 𝑘)⟨ℓ⟩, ℓ1,𝐶 Ω.K[𝑏] = 𝑘

Ω, ℓ0 ⊢ 𝑒 [𝑏] : 𝑡 ⟨ℓ .𝑏⟩, ℓ1,𝐶

Loop

(G,Δ,K, Γ) = Ω 𝛼𝑠𝑡𝑎𝑟𝑡 ∉ Δ Ω ⊢ 𝑘 G,Δ, (K, 𝑏 < 𝑘), Γ, 𝛼𝑠𝑡𝑎𝑟𝑡 ⊢ 𝑒 : 𝜏, ℓ𝑒𝑛𝑑 ,𝐶

nri(𝐶,𝑏) 𝐶0 = 𝐶 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡] [0/𝑏] ℓ1 = ℓ𝑒𝑛𝑑 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡] [0/𝑏]

𝐶1 = 𝐶 [ℓ1/𝛼𝑠𝑡𝑎𝑟𝑡] [1/𝑏] ℓ2 = ℓ𝑒𝑛𝑑 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡] [1/𝑏] 𝐶2 = 𝐶 [ℓ2/𝛼𝑠𝑡𝑎𝑟𝑡] [2/𝑏]

Ω, ℓ𝑖𝑛𝑖𝑡 ⊢ for 𝑏 < 𝑘 do 𝑒 : Unit⟨ℓ⟩, round(ℓ𝑒𝑛𝑑 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡], 𝑏),𝐶0 ∧𝐶1 ∧𝐶2

Comp

(G,Δ,K, Γ) = Ω 𝛼𝑠𝑡𝑎𝑟𝑡 ∉ Δ Ω ⊢ 𝑘 G,Δ, (K, 𝑏 < 𝑘), Γ, 𝛼𝑠𝑡𝑎𝑟𝑡 ⊢ 𝑒 : 𝑡 ⟨ℓ𝑣 .𝑏⟩, ℓ𝑒𝑛𝑑 ,𝐶

nri(𝐶,𝑏) 𝐶0 = 𝐶 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡] [0/𝑏] ℓ1 = ℓ𝑒𝑛𝑑 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡] [0/𝑏]

𝐶1 = 𝐶 [ℓ1/𝛼𝑠𝑡𝑎𝑟𝑡] [1/𝑏] ℓ2 = ℓ𝑒𝑛𝑑 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡] [1/𝑏] 𝐶2 = 𝐶 [ℓ2/𝛼𝑠𝑡𝑎𝑟𝑡] [2/𝑏]

Ω, ℓ𝑖𝑛𝑖𝑡 ⊢ [𝑒 for 𝑏 < 𝑘] : vector(𝑡, 𝑘)⟨ℓ𝑣⟩, round(ℓ𝑒𝑛𝑑 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡], 𝑏),𝐶0 ∧𝐶1 ∧𝐶2

Fig. 12. Expression Typing: State, Vectors, Loops

resulting location of an if-statement is the greater of the two locations of its branches (locations

will be bypassed if one branch uses a location and another does not).

Functions abstract over polymorphic location and size variables and capture the constraints

a caller must satisfy to call them. Rules Abs and App are relatively standard, although the last

constraint of the App rule allows locations to be skipped to match the function’s input location.

Part 2: State, Vectors, and Loops. Figure 12 presents rules for checking state, vectors and loops.

In the Deref rule, the current location has advanced to ℓ1 just prior to derefence. Hence, one

must prove the address accessed (ℓ2) appears later than ℓ1 in the pipeline (the constraint added

in the conclusion of the rule). After execution of the expression, the current location will be the

successor of ℓ2. Because the value returned from the read has a base type, the location ℓ ′ associated

with it is irrelevant and may be chosen arbitrarily. The Update rule follows a similar pattern.

When checking indexing operations, the key is to ensure indices are in bounds. Fortunately,

patterns for using vectors in Lucid2 programs are limited, so simple bounds checking rules suffice.

The rule Index-const allows constants to be used to index vectors of known length and checks that

the index 𝑛 is less than the vector length 𝑛′. In rule Index-var, variables 𝑏 may index vectors only

when the bound on 𝑏 (given by K) is equal to the length of the vector. This latter rule allows simple

loops to iterate over vectors one location at a time, the common case in our suite of applications.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:20 Devon Loehr and David Walker

Notice that these rules do not affect the final location, because vectors are not themselves global

values.

The most interesting rules are the rules for loops (Loop) and comprehensions (Comp). The Loop

rule analyzes the loop body 𝑒 , as if it starts from some arbitrary location 𝛼𝑠𝑡𝑎𝑟𝑡 and with respect

to a loop index variable 𝑏. Doing so generates a collection of constraints 𝐶 that is parametric in

𝛼𝑠𝑡𝑎𝑟𝑡 and 𝑏. Three instances of𝐶 are then created,𝐶0,𝐶1, and𝐶2, representing the constraints that

would be generated on the 0𝑡ℎ , 1𝑠𝑡 , and 2𝑛𝑑 iterations of the loop. The premise nri(𝐶,𝑏) requires

that all locations ℓ appearing in 𝐶 contain at most one occurrence of 𝑏 (for example, the location

0.𝑏.1.𝑏 would be disallowed; see ğ3.4 for a more detailed explanation). So long as it is satisfied, it

suffices to only check 𝐶0,𝐶1 and 𝐶2. If they are consistent, then the loop is safe to executeÐthere

will be no ordering violations regardless of the number of iterations of the loop at run time. We

sketch the proof of this property in ğ4; a full proof can be found in the auxiliary archive.

To determine the current location after execution of the loop, we take the effect at the end of

the loop body, ℓ𝑒𝑛𝑑 [ℓ𝑖𝑛𝑖𝑡/𝛼𝑠𝑡𝑎𝑟𝑡], and we "round up" past 𝑏. For instance, if we were just iterating

over locations 0.0.0, 0.0.1, 0.0.2, . . . etc., which are all captured parametrically as 0.0.𝑏, then this

rounding operation advances us past all such indices to location 0.1 by "rounding up," or chopping

off everything after 𝑏 and moving to the successor location.

The Comp rule governs type checking of vector comprehensions. It too is an iterative construct

and hence inherits much of the complexity of the Loop rule.

3.4 Limitations

Like most type systems, Lucid2 is incomplete: there exist programs that execute without error,

but which fail to type check. One example of incompleteness arises while checking if-statements.

Expressions like the following one will not type check when the relation between locations of x

and y is unknown.
✄ �

1 if ... then !x else !y
✂ ✁

We considered adding a "max" operator to serve as a join for our algebra of locations (max(ℓ1,ℓ2)

being the larger of the two locations), but doing so appeared to complicate type inference, and did

not appear worth the effort at the moment: in practice, we have not yet developed any applications

that would benefit from such an extension.

One other source of incompleteness arises in the Loop and Comp rules, where the premise

nri(𝐶,𝑏) rules out programs that use the same index variable twice, as in the expression g[i][i].

The following program fragment demonstrates why this is necessary:
✄ �

1 for i < 10 {

2 !g[i][i]; // Double indexing -- eventually we'll try to access g[6][6]

3 !g[i][5]; // Single indexing -- eventually we'll try to access g[6][5]

4 }
✂ ✁

This program would succeed for the first five iterations, but fail on the sixth. That is, it is not

sufficient to check only the first three iterations of this loop. The nri(𝐶,𝑏) premise serves to

weed out these examples. This restriction does rule out some legitimate programs ś e.g. the above

example with line 3 commented out. However, while there are applications that iterate through

elements of a vector, we have not seen any that iterate along a diagonal like this. So again, this

limitation does not appear to have any practical impact.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:21

4 PROPERTIES OF LUCID 2.0

In this section, we discuss selected properties of Lucid 2.0, primarily those involving locations, and

finish with a statement of soundness. Proofs of each property are available in appendices C and D

in the auxiliary archive.

Value Lemma. The following lemma states that values are inert; they do not have an effect on the

world or generate constraints. They can appear anywhere in the pipeline.

Lemma 4.1 (Value Lemma). If Ω, ℓ ⊢ 𝑣 : 𝜏, ℓ ′,𝐶 , then

• (V-1) ℓ = ℓ ′ and 𝐶 = true.

• (V-2) For all ℓ , we have Ω, ℓ ⊢ 𝑣 : 𝜏, ℓ,𝐶 .

Location Weakening. Intuitively, the following lemma states that if we can typecheck an expres-

sion from a given location, we can also typecheck it from any earlier location. This is exactly as we

would expect, since starting execution from an earlier location in the pipeline gives us access to all

the same data as before.

Lemma 4.2 (Location Weakening). Assume ⊢ Ω and Ω, ℓ𝑠𝑡𝑎𝑟𝑡 , ⊢ 𝑒 : 𝜏, ℓ𝑒𝑛𝑑 ,𝐶 where ⊨ 𝐶 . Then

for all ℓ ′𝑠𝑡𝑎𝑟𝑡 ≤ ℓ𝑠𝑡𝑎𝑟𝑡 , then there is some ℓ ′
𝑒𝑛𝑑

≤ ℓ𝑒𝑛𝑑 such that Ω, ℓ ′𝑠𝑡𝑎𝑟𝑡 , ⊢ 𝑒 : 𝜏, ℓ ′
𝑒𝑛𝑑

,𝐶 ′, where ⊨ 𝐶 ′.

Furthermore, either ℓ ′
𝑒𝑛𝑑

= ℓ𝑒𝑛𝑑 or ℓ ′
𝑒𝑛𝑑

= ℓ ′𝑠𝑡𝑎𝑟𝑡 .

Monotonicity.When the constraints generated from an expression hold, computations are guar-

anteed to move forward in the pipeline. The monotonicity property establishes this fact.

Lemma 4.3 (Monotonicity). If ⊢ Ω, and Ω, ℓ𝑠𝑡𝑎𝑟𝑡 ⊢ 𝑒 : 𝜏, ℓ𝑒𝑛𝑑 ,𝐶 , then 𝐶 ⇒ ℓ𝑠𝑡𝑎𝑟𝑡 ≤ ℓ𝑒𝑛𝑑 .

Bounded Constraints. The following lemma is the first step in proving properties of loops. It

allows us to connect the starting and ending location of a typing judgement with the constraints

generated by that judgement.

Lemma 4.4 (Bounded Constraints). If ⊢ Ω, and Ω, ℓ𝑠𝑡𝑎𝑟𝑡 ⊢ 𝑒 : 𝜏, ℓ𝑒𝑛𝑑 ,𝐶 , then for each constraint

𝑥 ≤ 𝑦 ∈ 𝐶 we have 𝐶 ⇒ ℓ𝑠𝑡𝑎𝑟𝑡 ≤ 𝑥 ≤ 𝑦 ≤ ℓ𝑒𝑛𝑑 .

Loop Unrolling. If a loop survives three iterations, it will survive arbitrarily many more; the

following lemma is key to proving this fact. Since it is such an important property, we provide a

high-level proof sketch as well as the statement of the lemma.

Lemma 4.5 (Loop Unrolling). Assume ⊢ Ω and Ω, 𝛼𝑠𝑡𝑎𝑟𝑡 ⊢ 𝑒 : 𝜏, ℓ𝑒𝑛𝑑 ,𝐶 . For all locations

ℓ𝑖𝑛𝑖𝑡 and bounded sizes 𝑖 , define ℓ0 = ℓ𝑖𝑛𝑖𝑡 , 𝐶0 = 𝐶 [ℓ0/𝛼𝑠𝑡𝑎𝑟𝑡] [0/𝑖] and for 𝑗 > 0 define ℓ𝑗 =

ℓ𝑒𝑛𝑑 [ℓ𝑗−1/𝛼𝑠𝑡𝑎𝑟𝑡] [(𝑗 − 1)/𝑖] and 𝐶 𝑗 = 𝐶 [ℓ𝑗/𝛼𝑠𝑡𝑎𝑟𝑡] [𝑗/𝑖]. Finally, assume nri(𝐶 , 𝑖). Then if 𝑀 is

a model of 𝐶0 ∧𝐶1 ∧𝐶2,𝑀 is also a model of ∀𝑗 ≥ 0.𝐶 𝑗 .

We prove this lemma by fixing a model 𝑀 , then showing that for each constraint 𝑥 ≤ 𝑦 ∈ 𝐶 ,

𝑥 [𝑗/𝑖] ≤ 𝑦 [𝑗/𝑖] for all 𝑗 > 0. To do so, we use the fact that the initial location of loop iteration 𝑗 + 1

is the same as the final location of iteration 𝑗 . Together with the Bounded Constraints lemma, this

lets us conclude that 𝑥 [𝑗/𝑖] ≤ 𝑦 [𝑗/𝑖] ≤ 𝑥 [𝑗 + 1/𝑖] ≤ 𝑦 [𝑗 + 1/𝑖], so long as we know that the left-

and right-most inequalities hold separately. We know they do when 𝑗 = 1, since𝑀 satisfies 𝐶1 and

𝐶2, and so we use the fact that 𝑦 [1/𝑖] is "sandwiched" between 𝑥 [1/𝑖] and 𝑥 [2/𝑖] (and similarly for

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:22 Devon Loehr and David Walker

𝑥 [2/𝑖]) to perform a case analysis on the structure of 𝑥 and 𝑦 that shows the inequality will always

hold regardless of 𝑗 .

An astute reader might wonder why we chose to use𝐶1 and𝐶2 rather than𝐶0 and𝐶1. This stems

from the fact that the initial location of the loop iteration may appear in constraints, and may not

always have the same form between iterations; if it does not, the sandwiching technique fails. While

the initial location of each iteration after the first follows a set pattern, the initial location of the

first iteration is determined by the code before the loop, and hence may differ from the following

iterations. Thus we can relate the initial locations of iterations 1 and 2, but not of iterations 0 and 1.

This may be a limitation of our proof technique, as in practice, we know of no loops that succeed

for two iterations but fail on the third. However, it is not a costly limitationÐour type checker can

analyze any of our benchmarks in under two seconds (see ğ5.4).

Memory Typing. Execution through the pipeline will proceed without error provided the state

associated with the pipeline has the expected structure. The following definition describes the

required relation between memories 𝑀 and global specificiations G. When the G in question is

clear from context, we may omit it and simply say "𝑀 is well-formed."

Definition 4.6. 𝑀 is well-formed with respect toG, written𝑀 ∼ G, when it satisfies the following

properties.

• 𝑀 [𝑧] exists if and only if G[𝑧] exists, and

• if𝑀 [𝑧] = 𝑣 and G[𝑧] = 𝑇 then for all Ω, ℓ, ℓ ′, we have Ω, ℓ ⊢ 𝑣 : 𝑇 ⟨ℓ ′⟩, ℓ, true

Soundness. The prior lemmas constitute the scaffolding on which we can prove a soundness

theorem based on progress and preservation.

Theorem 4.7 (Progress). Let Σ, 𝑧 ⊢ 𝑒 : 𝜏, 𝑧 ′,𝐶 where ⊨ 𝐶 . Let𝑀 ∼ Σ.G. Then either 𝑒 is a value or

there are some𝑀 ′, 𝑧 ′′, 𝑒 ′ such that𝑀,𝑧, 𝑒 → 𝑀 ′, 𝑧 ′′, 𝑒 ′.

Theorem 4.8 (Preservation). Let Σ, 𝑧𝑠𝑡𝑎𝑟𝑡 ⊢ 𝑒 : 𝜏, 𝑧𝑒𝑛𝑑 ,𝐶 and𝑀,𝑧𝑠𝑡𝑎𝑟𝑡 , 𝑒,→ 𝑀 ′, 𝑧𝑠𝑡𝑒𝑝 , 𝑒
′, where

⊨ 𝐶 and𝑀 ∼ Σ.G. Then𝑀 ′ ∼ Σ.G, and Σ, 𝑧𝑠𝑡𝑒𝑝 ⊢ 𝑒 ′ : 𝜏, 𝑧 ′
𝑒𝑛𝑑

,𝐶 ′, where ⊨ 𝐶 ′ and 𝑧 ′
𝑒𝑛𝑑

≤ 𝑧𝑒𝑛𝑑 .

5 IMPLEMENTATION AND EVALUATION

We implemented Lucid2 in OCaml as an extension to Lucid1. Our implementation consists of (1)

language extensions for polymorphism, constraints, records, abstract types, first order modules,

vectors, and loops; (2) an extended type checker that implements the rules in ğ3; (3) type, location and

constraint inference, and (4) compile-time transformations that eliminate each language extension,

reducing the extended language back to Lucid1 for the rest of the Lucid1 system to compile to the

Intel Tofino. The implementation contains a number of practically important, but theoretically

straightforward extensions to the idealized language defined in the prior section, including, for

example, mutable arrays rather than single-cell references (i.e., the addr type), the adoption of an

imperative C-like syntax, and the creation of a simple module system with abstract types, events

and event handlers. We discus a few issues that arose in the implementation below.

5.1 Type Inference and Constraint Checking

We have implemented type, effect, and size inference using an analogue of Algorithm J (Milner

[1978]). The structure of locations (in particular, the unary representation of numbers) was carefully

chosen to be amenable to unification-based type inference. A key aspect of type inference involves

checking satisfiability of constraints. Satisfiability queries are implemented by transforming effects

into their list-based representation from ğ3.1 and then encoding constraints in a decidable fragment

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:23

selectℓ (𝑖) =

0 𝑖 = 0

𝐵𝑏 + 2 𝑖 = 1

1 𝑖 = 2

−1 otherwise

(a)

selectℓ (𝑖) =

select(𝐴𝛼 , 𝑖) 0 ≤ 𝑖 < 𝐿𝛼 − 1

select(𝐴𝛼 , 𝑖) + 𝑛 𝑖 = 𝐿𝛼 − 1

selectℓ′ (𝑖) 𝐿𝛼 ≤ 𝑖 < 𝐿𝛼 + len(ℓ ′)

−1 otherwise

(b)

Fig. 13. select functions for ℓ when (a) ℓ = 0.(𝑏 + 2) .1 and (b) hd ℓ = (𝛼 + 𝑛) and tl ℓ = ℓ ′

of the theory of arrays, which we check using Z3 (de Moura and Bjùrner [2008]). We describe the

encoding in ğ5.3. Although we run a large number of queries per program (once per function call),

each one is typically small enough that we get good performance nonetheless (see ğ5.4).

5.2 Events and Handlers

Our formal language omits recursion, and our implementation is similar, since the switch hardware

cannot implement unbounded recursion in a single pass through a pipeline. However, recursive

programs can be implemented via the packet recirculation mechanism available on the Tofino chip,

which directs packets exiting the chip back to the beginning of the pipeline. Recirculation is made

available to programmers via events and event handlers, and hence, event handlers are effectively

mutually recursive with one another. Rather than attempting to infer constraints for handlers, we

opted to require user-supplied constraint annotations when events are declared. We check that the

constraints hold whenever a new event of the given type is generated, and assume the constraints

in the body of the event handler when it receives such an event. For instance, we might declare an

event foo as follows.
✄ �

1 event [x <= y] foo(array<bool> x, array<bool> y);
✂ ✁

Doing so mandates the system prove x <= y when an event is generated, and allows a foo-handler

to assume x <= y. In other words, these events are a form of dependent pair.

These constraints place some annotation burden on the programmer, but the burden is minimal

and the explicit annotations serve as useful documentation. In practice, many events do not require

constraint annotations at allÐthey are typically only required when an event takes multiple global

variables as parameters, which is rare. In most cases, we can typecheck the body without any

assumptions about the order of the parameters.

5.3 SMT Encoding

We encode locations using Z3’s Array sort, using a strategy inspired by (Bradley et al. [2006]). Z3

Arrays are essentially infinite integer lists; we embed our (finite) lists into these by setting all other

entries to −1.

Specifically, we encode each location ℓ as a function selectℓ such that selectℓ (𝑖) is the 𝑖th

element of ℓ . For concrete locations, and those which contain only bounded variables, the encoding

is straightforward. For each bounded variable 𝑏, we introduce a new Int-Sort SMT variable 𝐵𝑏 ,

constrain it to be nonnegative, and return it from the select function as necessary. For example, if

ℓ = 0.(𝑏 + 2).1, we would add a new variable 𝐵𝑏 , a new constraint 𝐵𝑏 ≥ 0, and define selectℓ as in

Figure 13 (a). This is easily represented in SMT as a nested if-then-else expression.

The tricky part is encoding locations that begin with a location variable 𝛼 +𝑛. Since 𝛼 represents

a location, we have to encode it as an Array-sort variable. In fact, we create two new variables: 𝐴𝛼

and 𝐿𝛼 , where 𝐴𝛼 represents 𝛼 itself and 𝐿𝛼 is an Int-sort variable representing the length of 𝐴𝛼 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:24 Devon Loehr and David Walker

Table 1. Modules implemented in Lucid2. All make heavy use of polymorphism, records, and vectors. When

one module builds on other modules, we indicate the additional lines of code (LoC) with a +.

Typing

Module Description LoC time (sec)

Bloom Filter Probabilistic set of elements. 53 0.26

+Aging Entries time out +74 +0.44

Hash table Deterministic set of elements 25 0.10

+Cuckoo hashing Contains multiple stages to deal with collisions +45 +0.22

Hash table w/ timeout Deterministic set of elements, plus the time each was last touched 65 0.38

+Cuckoo hashing Contains multiple stages, and clears timed-out entries automatically +81 +0.31

Bidirectional Map Stores lists of integers in an array, mapping each to/from its index 39 1.1

Count-min sketch Probabilistically counts the number of times an element is accessed 70 0.45

+Aging Entries time out +83 +0.71

We then encode our select function as follows. First, we define the Z3 expression len(ℓ) to

be the length of ℓ if ℓ does not begin with an 𝛼 , and define len(ℓ) = 𝐿𝛼 + len(tl ℓ) otherwise.

Now assume hd ℓ = (𝛼 + 𝑛) and tl ℓ = ℓ ′. Since 𝛼s can only appear at the beginning of a location,

we can encode selectℓ′ as in the earlier paragraph. Using select to denote Z3’s built-in Array

indexing operation, we define selectℓ as in Figure 13 (b). We also add constraints that the result

of selecting from 𝐴𝛼 is always nonnegative, since our location lists never contain negative entries.

5.3.1 Encoding Constraints. Given our location encoding, we encode the constraint ℓ1 < ℓ2 as

∃𝑖 < len(ℓ1) .
(
selectℓ1 (𝑖) < selectℓ2 (𝑖) ∧ ∀𝑗 < 𝑖 .selectℓ1 (𝑗) = selectℓ2 (𝑗)

)

Because the existential quantifier appears at the beginning of the constraint, we may remove it

via Skolemization, resulting in a query that contains only universal quantifiers. We have found

this encoding works quickly without any modifications, but it is possible to remove the universal

quantifiers as well, using techniques from (Bradley et al. [2006]). This shows that the problem is

decidable, and empirically has been within the bounds of Z3’s capabilities.

5.3.2 Encoding Implication. When typechecking recursive handlers, we need to check whether the

user-supplied constraints imply the constraints of the body. This is difficult because, naïvely, the

constraint 𝐶1 ⇒ 𝐶2 is equivalent to ∼ 𝐶1 ∨𝐶2, and introducing negation runs the risk of quantifier

alternation rendering our encoding undecidable. Fortunately, there is a simple fix: the negation of

the constraint ℓ1 ≤ ℓ2 is the (positive) constraint 𝑆 (ℓ2) ≤ ℓ1. By negating our inequalities before

encoding into SMT, we can encode ∼ 𝐶1 ∨𝐶2 solely in terms of positive atoms.

5.4 Programming Experience

To demonstrate the usefulness of Lucid2, we reimplemented the example applications presented

in the Lucid1 paper (Sonchack et al. [2021]). To do so, we first implemented several widely-used

networking data structures as stand-alone modules (listed in Figure 1), each needed by one or more

applications. All of these modules utilize polymorphism, records, vectors and abstract types to

provide a flexible, reusable, and abstract interface.

We found that on the whole, the example applications benefited substantially from Lucid2’s

extensions. Most programs used conventional data structures, which, when programming in Lucid1,

had to be inlined into a monolithic application, leading to lengthy and obscure code. Once those

data structures were defined as independent, reuseable modules in Lucid2, the code became clearer.

In all but one case, the code became much shorter as well; the exception was the Simple NAT

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

Safe, Modular Packet Pipeline Programming 38:25

Table 2. Applications implemented in Lucid2. Lines of code (LoC) is for the application alone, not including

comments or the LoC for the modules on which it depends (see Figure 1 for the latter).

Lucid1 Lucid2 Typing

Application Description Modules Used LoC LoC time (sec)

Stateful Firewall Blocks unsolicited packets. Cuckoo Hash w/ Aging 189 37 .68

Closed-loop DNS Defense Identify/counter DNS reflection Bloom Filter w/ Aging 215 52 1.8

attacks Cuckoo Hash w/ Aging

*Flow [Sonchack et al. 2018] Collects packets by flow for anal-

ysis.

Vectors only 149 104 0.03

Distributed Prob. Firewall Synchronize a firewall across

multiple switches

Bloom Filter 66 39 0.28

+Aging Entries in the firewall time out Bloom Filter /w Aging 119 40 0.75

Simple NAT Performs network address trans-

lation

Bidirectional Map 41 62 1.5

Historical Prob. Queries Allows queries of frequency for

traffic flows

Count-min sketch w/ Aging 93 26 1.2

application, in which the boilerplate of defining a NAT-specific module was significant compared

to the original program size. We found that typechecking times were low, with even the longest

example taking under 2 seconds.

A list of these programs appears in Figure 2. Lucid1 also reported three other applications (simple

chain replication, single-destination RIP, and automatic rerouting), but they were either very simple

or highly specialized for their particular task. We do not report on them here because they saw

fewer benefits from Lucid2’s new features.

6 RELATED WORK

Over the past decade, researchers have developed a number of languages for network programming.

For example, Frenetic (Foster et al. [2011]) was designed to program OpenFlow controllers: Frenetic

computations sat on a software server and generated lists of packet-processing rules to be sent to

switches. These lists of packet-processing rules were described using their own domain-specific

sublanguage. Over time, that sublanguage evolved and developed in work on NetCore (Schlesinger

et al. [2014]), Pyretic (Reich et al. [2013]), and NetKAT (Anderson et al. [2014]). Other languages, like

FlowLog (Nelson et al. [2014]) and Maple (Voellmy et al. [2013]) used other kinds of programming

paradigms to control these OpenFlow systems at a high level of abstraction. A key distinction

between earlier work based around OpenFlow, and later work based around P4, is that P4 switches

contain persistent, mutable and programmable state. NetKAT (for example) is stateless and cannot

describe or implement the stateful applications developed in this paper. The pipeline compilation

and safety issues described in this paper do not arise in these more limited systems.

More recently, there have been a number of efforts to make programming P4 switches easier.

For example, Domino (Sivaraman et al. [2016]), Chipmunk (Gao et al. [2020a]), Lyra (Gao et al.

[2020b]), and P4All (Hogan et al. [2020]) allow programmers to use high-level, imperative, C-like

languages to describe switch computations. They then deploy program synthesis techniques to

allocate those computations to stages in the pipelines of one or more hardware devices. However,

these tools provide little or no feedback when they fail to lay out computations along a pipeline.

We view Lucid2’s contributions to this space as complementary to, and synergistic with, these

other effortsÐone can certainly imagine future systems in which programmers are constrained by

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

38:26 Devon Loehr and David Walker

Lucid2’s type system, ensuring computations can be compiled, and use synthesis techniques to

spread computation across one or more devices. Indeed, Lucid2’s vectors and loops were inspired

by related unsafe features in P4All (Hogan et al. [2020]). By incorporating appropriate elements of

Lucid2’s type system, P4All could deliver safe vectors, loops, and synthesis in the future.

Outside of the domain of networking, type-and-effect systems have been used to control memory

access since the 80s (Gifford and Lucassen [1986]) and grew to prominence in the 90s with the

work of Tofte, Talpin, Birkedal and others on region inference (Tofte and Birkedal [1998]; Tofte and

Talpin [1997]). These systems protected against use-after-free errors, but did not constrain access

order along a pipeline as Lucid2 does. Later, researchers developed type systems for specifying

more general "resource usage protocols" (DeLine and Fahndrich [1999]; Igarashi and Kobayashi

[2005]). Such systems can specify constraints on the order in which resources are used, but the

protocols involved have a different character (often characterized by regular languages rather than

numeric, ordered, hierarchical locations), use different technical machinery, and were targeted at

different applications.

An alternative to type-and-effect systems are those type systems based on linear (Girard [1987])

or ordered logic (Polakow and Pfenning [1999b]). As mentioned earlier, ordered type systems

generate similar kinds of constraints, effectively constraining the order in which data is accessed,

but they have not been applied to packet processing pipelines. Moreover, to be effective they would

likely need to be enriched with a variety of new features such as hierarchical locations, ordering

constraints and new rules for managing vectors and loops.

7 CONCLUSION

Lucid2 is the first language to allow safe, modular programming techniques for programs which run

inside packet processing pipelines. Its hierarchical, virtual pipelines, polymorphism, constraints,

vectors, loops and modules make it possible to create libraries of useful data structures. Its type

inference and automated constraint solving relieve programmers from unnecessary annotation

burdens. Its semantics are well-defined and its metatheory is sound.

We demonstrate the utility of Lucid2 by developing a library of generic networking data structures,

and using them to reimplement an existing set of applications. Most programs saw significant

improvements in clarity as a result, and the library can be used for yet more applications in the

future. While Lucid2 was motivated by the constraints of PISA architectures in general, and the Intel

Tofino in particular, pipelined parallelism is a widely-used technique for improving the throughput

of data-processing applications. Lucid2’s design and type system may provide a guide for future

researchers looking to deploy these ideas in the context of other network devices (Baldi [2020];

Kalkunte [2019]), other network programming languages (Gao et al. [2020b,a]; Hogan et al. [2020];

Sivaraman et al. [2016]), or other domains entirely, such as signal processing (Ebeling et al. [1996])

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant

No. FMitF-1837030 (https://www.nsf.gov/awardsearch/showAward?AWD_ID=1837030) and Grant

No. CNS-1703493 (https://www.nsf.gov/awardsearch/showAward?AWD_ID=1703493). Any opin-

ions, findings, and conclusions or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut, The Vinh

Lam, Francis Matus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: distributed congestion-aware load

balancing for datacenters. In ACM SIGCOMM. 503ś514. https://doi.org/10.1145/2740070.2626316

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1837030
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1703493
https://doi.org/10.1145/2740070.2626316

Safe, Modular Packet Pipeline Programming 38:27

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.

2014. NetKAT: Semantic Foundations for Networks. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. 113ś126. https://doi.org/10.1145/2578855.2535862

Mario Baldi. 2020. Pensando Announces P4-programmable Platform and Joins P4 Community.

https://opennetworking.org/news-and-events/blog/pensando-announces-p4-programmable-platform-and-joins-

p4-community/.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin

Vahdat, George Varghese, and David Walker. 2014. P4: Programming protocol-independent packet processors. ACM

SIGCOMM Computer Communication Review 44, 3 (2014), 87ś95. https://doi.org/10.1145/2656877.2656890

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and Mark

Horowitz. 2013. Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN. In ACM

SIGCOMM. 99ś110. https://doi.org/10.1145/2486001.2486011

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable About Arrays?. In Verification, Model

Checking, and Abstract Interpretation, E. Allen Emerson and Kedar S. Namjoshi (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 427ś442. https://doi.org/10.1007/11609773_28

Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and

Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337ś340.

https://doi.org/10.5555/1792734.1792766

Rob DeLine and Manuel Fahndrich. 1999. Natural deduction for intuitionistic non-commutative linear logic. In International

Conference on Typed Lambda Calculi and Applications. https://doi.org/10.1016/S1571-0661(04)80088-4

Carl Ebeling, Darren C. Cronquist, and Paul Franklin. 1996. RaPiD - Reconfigurable Pipelined Datapath. In Proceedings of

the 6th International Workshop on Field-Programmable Logic, Smart Applications, New Paradigms and Compilers (FPL ’96).

Springer-Verlag, Berlin, Heidelberg, 126ś135. https://doi.org/10.5555/647923.741212

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rexford, Alec Story, and David Walker.

2011. Frenetic: A Network Programming Language. In ACM International Conference on Functional Programming. 279ś291.

https://doi.org/10.1145/2034574.2034812

Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang,

and Minlan Yu. 2020b. Lyra: A Cross-Platform Language and Compiler for Data Plane Programming on Heterogeneous

ASICs. In ACM SIGCOMM. 435ś450. https://doi.org/10.1145/3387514.3405879

Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan, Aatish Kishan Varma, Pravein Govindan Kannan,

Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. 2020a. Switch Code Generation Using Program Synthesis. In

ACM SIGCOMM. 44ś61. https://doi.org/10.1145/3387514.3405852

David K. Gifford and John M. Lucassen. 1986. Integrating Functional and Imperative Programming. In Proceedings of the

1986 ACM Conference on LISP and Functional Programming (Cambridge, Massachusetts, USA) (LFP ’86). Association for

Computing Machinery, New York, NY, USA, 28ś38. https://doi.org/10.1145/319838.319848

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50, 1 (Jan. 1987), 1ś102. https://doi.org/10.1016/0304-3975(87)90045-

4

Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford, David Walker, and Rob Harrison. 2020. Elastic

Switch Programming with P4All. In ACM SIGCOMM HotNets Networks. 168ś174. https://doi.org/10.1145/3422604.3425933

Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker. 2020. Contra: A programmable system for

performance-aware routing. In USENIX Symposium on Networked Systems Design and Implementation. 701ś721.

Atsushi Igarashi and Naoki Kobayashi. 2005. Resource Usage Analysis. ACM Trans. Program. Lang. Syst. 27, 2 (March 2005),

264ś313. https://doi.org/10.1145/1057387.1057390

Intel. 2020. Intel Tofino 2. https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-

switch/tofino-2-series.html.

Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim, and David Mazières. 2014. Millions of Little

Minions: Using Packets for Low Latency Network Programming and Visibility. SIGCOMM Comput. Commun. Rev. 44, 4

(Aug. 2014), 3ś14. https://doi.org/10.1145/2740070.2626292

Mohan Kalkunte. 2019. Broadcom’s new Trident 4 and Jericho 2 switch devices offer programmability at scale.

https://www.broadcom.com/blog/trident4-and-jericho2-offer-programmability-at-scale.

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford. 2016. Hula: Scalable load balancing

using programmable data planes. In ACM SIGCOMM Symposium on SDN Research. 1ś12. https://doi.org/10.1145/2890955.

2890968

Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan

Yu, and Vyas Sekar. 2021. Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric

DDoS Attacks with Programmable Switches. In USENIX Security Symposium.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1007/11609773_28
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.1016/S1571-0661(04)80088-4
https://doi.org/10.5555/647923.741212
https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3387514.3405852
https://doi.org/10.1145/319838.319848
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/3422604.3425933
https://doi.org/10.1145/1057387.1057390
https://doi.org/10.1145/2740070.2626292
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/2890955.2890968

38:28 Devon Loehr and David Walker

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (1978), 348ś375.

https://doi.org/10.1016/0022-0000(78)90014-4

Tim Nelson, Andrew D. Ferguson, Michael J.G. Scheer, and Shriram Krishnamurthi. 2014. Tierless Programming and

Reasoning for Software-Defined Networks. In USENIX Networked Systems Design and Implementation. 519ś531. https:

//doi.org/10.5555/2616448.2616496

Jeff Polakow and Frank Pfenning. 1999a. Natural Deduction for Intuitionistic Non-communicative Linear Logic. In Typed

Lambda Calculi and Applications, 4th International Conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings

(Lecture Notes in Computer Science, Vol. 1581), Jean-Yves Girard (Ed.). Springer, 295ś309. https://doi.org/10.1016/S1571-

0661(04)80088-4

Jeff Polakow and Frank Pfenning. 1999b. Natural deduction for intuitionistic non-commutative linear logic. In International

Conference on Typed Lambda Calculi and Applications. https://doi.org/10.1016/S1571-0661(04)80088-4

J. Polokow and Frank Pfenning. 1999. Relating Natural Deduction and Sequent Calculus for Intuitionistic Non-Commutative

Linear Logic. In Fifteenth Conference on Mathematical Foundations of Progamming Semantics, MFPS 1999, Tulane University,

New Orleans, LA, USA, April 28 - May 1, 1999 (Electronic Notes in Theoretical Computer Science, Vol. 20), Stephen D.

Brookes, Achim Jung, Michael W. Mislove, and Andre Scedrov (Eds.). Elsevier, 449ś466. https://doi.org/10.1016/S1571-

0661(04)80088-4

Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David Walker. 2013. Modular sdn programming

with pyretic. Technical Reprot of USENIX (2013), 30.

Cole Schlesinger, Michael Greenberg, and David Walker. 2014. Concurrent NetCore: From Policies to Pipelines. In ACM

International Conference on Functional Programming. 11ś24. https://doi.org/10.1145/2692915.2628157

Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulkarni. 2020. TurboEPC: Leveraging Dataplane Pro-

grammability to Accelerate the Mobile Packet Core. In ACM Symposium on SDN Research. 83ś95. https://doi.org/10.

1145/3373360.3380839

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Balakrishnan, George

Varghese, Nick McKeown, and Steve Licking. 2016. Packet transactions: High-level programming for line-rate switches.

In ACM SIGCOMM. 15ś28. https://doi.org/10.1145/2934872.2934900

John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. 2021. Lucid: A Language for Control in the Data Plane. In

Proceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association for Computing

Machinery, New York, NY, USA, 731ś747. https://doi.org/10.1145/3452296.3472903

John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller, and Jonathan M Smith. 2018. Scaling hardware accelerated

network monitoring to concurrent and dynamic queries with *Flow. In USENIX Annual Technical Conference. 823ś835.

https://doi.org/10.5555/3277355.3277435

Mads Tofte and Lars Birkedal. 1998. A Region Inference Algorithm. ACM Trans. Program. Lang. Syst. 20, 4 (July 1998),

724ś767. https://doi.org/10.1145/291891.291894

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Inf. Comput. 132, 2 (Feb. 1997), 109ś176.

https://doi.org/10.1006/inco.1996.2613

Andreas Voellmy, JunchangWang, Y Richard Yang, Bryan Ford, and Paul Hudak. 2013. Maple: Simplifying SDN programming

using algorithmic policies. In ACM SIGCOMM. 87ś98. https://doi.org/10.1145/2534169.2486030

David Walker. 2005. Advanced Topics in Types and Programming Languages. The MIT Press, Chapter Substructural Type

Systems, 3ś44.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 38. Publication date: January 2022.

https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.5555/2616448.2616496
https://doi.org/10.5555/2616448.2616496
https://doi.org/10.1016/S1571-0661(04)80088-4
https://doi.org/10.1016/S1571-0661(04)80088-4
https://doi.org/10.1016/S1571-0661(04)80088-4
https://doi.org/10.1016/S1571-0661(04)80088-4
https://doi.org/10.1016/S1571-0661(04)80088-4
https://doi.org/10.1145/2692915.2628157
https://doi.org/10.1145/3373360.3380839
https://doi.org/10.1145/3373360.3380839
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/3452296.3472903
https://doi.org/10.5555/3277355.3277435
https://doi.org/10.1145/291891.291894
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/2534169.2486030

	Abstract
	1 Introduction
	2 Key Ideas
	2.1 Packet Processing Pipelines
	2.2 Ordering Constraints
	2.3 A Basic Bloom Filter
	2.4 Polymorphism and Constraints
	2.5 Records and Modules
	2.6 Vectors
	2.7 Location Inference

	3 Language and Type System
	3.1 Locations
	3.2 Pipeline Semantics
	3.3 Type Checking
	3.4 Limitations

	4 Properties of Lucid 2.0
	5 Implementation and Evaluation
	5.1 Type Inference and Constraint Checking
	5.2 Events and Handlers
	5.3 SMT Encoding
	5.4 Programming Experience

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

