
SwitchLog: A Logic Programming Language for
Network Switches

Vaibhav Mehta1[0000−0003−2357−3023], Devon Loehr1[0000−0003−1127−8932],
John Sonchack1[0000−0002−9127−161X], and David Walker1[0000−0003−3681−149X]

Princeton University, Princeton NJ 08544, USA
vaibhavm@princeton.edu

Abstract. The development of programmable switches such as the In-
tel Tofino has allowed network designers to implement a wide range of
new in-network applications and network control logic. However, cur-
rent switch programming languages, like P4, operate at a very low level
of abstraction. This paper introduces SwitchLog, a new experimental
logic programming language designed to lift the level of abstraction at
which network programmers operate, while remaining amenable to effi-
cient implementation on programmable switches. SwitchLog is inspired
by previous distributed logic programming languages such as NDLog, in
which programmers declare a series of facts, each located at a particular
switch in the network. Logic programming rules that operate on facts
at different locations implicitly generate network communication, and
are updated incrementally, as packets pass through a switch. In order
to ensure these updates can be implemented efficiently on switch hard-
ware, SwitchLog imposes several restrictions on the way programmers
can craft their rules. We demonstrate that SwitchLog can be used to
express a variety of networking applications in a mere handful of lines of
code.

Keywords: Programmable Networks · Data Plane Programming. · P4
· Logic Programming · Datalog

1 Introduction

Programmable switches allow network operators to customize the packet process-
ing of their network, adding powerful new capabilities such as for monitoring [6]
and performance-aware routing [8]. The core of a programmable switch is a re-
configurable ASIC – a processor specialized for packet operations at high and
guaranteed throughputs.

The de facto standard programming language for reconfigurable ASICs is
P4[2]. However, while P4 allows us to program these devices, it does not make it
easy. P4 can be viewed as an “assembly language” for line-rate switch program-
ming: it provides fine-grained, low-level control over device operations, but there
are few abstractions and, to paraphrase Robin Milner, much can “go wrong.”

As a result, researchers have begun to investigate the definition of higher-level
languages for switch programming such as Domino [15], Sonata [6], MARPLE [14],

Path Queries [13], MAFIA [9], Chipmunk [5], µP4 [19], Lyra [4], Lucid [17,
10], and Π4 [3]. Each of these languages provides useful new ideas to the de-
sign space—the ultimate future switch programming language may well include
components from each of them, which is why exploration of a diverse range of
ideas is so valuable now. For instance, Domino, Chipmunk and Lyra improve
the switch programming experience by providing higher-level abstractions and
using program synthesis to generate efficient low-level code. Sonata and Path
Queries, among others, provide new abstractions for monitoring network traffic.
µP4 develops a framework that makes switch programs more modular and com-
positional. Lucid adds abstractions for events and event-handling. Π4 and Lucid
both develop new type systems for detecting user errors in switch programs.

In this paper, we continue to explore the design space of switch programming
languages. In particular, we were inspired by Loo’s past work on NDLog [12, 11]
and VMWare’s Differential Datalog [1], logic programming languages designed
for software network controllers. Loo observed that many key networking algo-
rithms, such as routing, are essentially table-driven algorithms: based on network
traffic or control messages, the algorithm constructs one or more tables. Those
tables are pushed to switches in the network data plane, which use them to guide
packet-level actions such as routing, forwarding, load balancing, or access con-
trol. Such table-driven algorithms are easily and compactly expressed as logic
programs. Moreover, the VMWare team observed that many networking con-
trol software algorithms are naturally incremental, so developing an incremental
Datalog system would deliver both high performance and economy of notation.
Finally, when programs are developed in this form, they are also amenable to
formal verification [20].

With these ideas in mind, we developed SwitchLog, a new, experimental,
incremental logic programming language designed to run on real-world switches,
such as the Intel Tofino. By running in the data plane instead of the control
plane, SwitchLog implementations of network algorithms can benefit from finer-
grained visibility into traffic conditions [15] and orders of magnitude better per-
formance [17]. However, Because SwitchLog is designed for switch hardware,
its design must differ from NDLog or Differential Datalog, which both run on
general-purpose software platforms. In particular, arbitrary joins (which are com-
mon in traditional Datalog languages) are simply too expensive to implement
in the network. Evaluating an arbitrary join requires iteration over all tuples in
a table. On a switch, iteration over a table requires processing one packet for
every tuple, because the switch’s architecture can only access a single memory
address (i.e., tuple) per packet.

To better support switch hardware, the incremental updates in a SwitchLog
program are designed to only require a bounded, and in many cases constant,
amount of work. To minimize the need for joins, SwitchLog extends conventional
Datalog with constructs that let programmers take advantage of the hardware-
accelerated lookup tables in the switch. In a SwitchLog program, each relation
specifies some fields to be keys, and the others values. The rest of the program is
then structured so that: 1) most facts can be looked up by their key (a constant-

2

time operation in a programmable switch), rather than by iterating over all
known facts; 2) facts with identical keys can be merged with user provided
value-aggregation functions.

Although SwitchLog is certainly more restrictive than conventional Datalogs,
these restrictions make it practical to execute logic programs on a completely
new class of hardware: line-rate switches. To aid programmers in writing efficient
programs, we provide several simple syntactic guidelines for writing programs
that both compile to switch hardware, and do not generate excessive work dur-
ing execution. We believe that these guidelines strike a good balance between
efficiency and expressivity – in practice, we have found that they still allow us
to efficiently implement a range of interesting network algorithms.

To demonstrate how SwitchLog may integrate with other network program-
ming languages, we have implemented SwitchLog as a sublanguage within Lu-
cid[17], an imperative switch programming language that compiles to P4. Within
a Lucid program, programmers use SwitchLog to write queries that generate ta-
bles of information for use in a larger network application. Once such tables
are materialized, the rest of the Lucid components may act on that information
(for instance, by routing packets, performing load balancing, or implementing
access control). Conversely, execution of SwitchLog components may be directly
triggered by events in the Lucid program, e.g., a Lucid program can inform the
SwitchLog sub-program of new facts. This back-and-forth makes it possible to
use logic programming abstractions where convenient, and fall back on lower-
level imperative constructs otherwise. While the current prototype is integrated
with Lucid, we note that the same design could be used to integrate SwitchLog
with any other imperative switch programming language, including P4.

In the follow sections, we illustrate the design of SwitchLog by example,
comparing and contrasting it with previous declarative networking languages
like NDLog in §2, explaining how to compile SwitchLog to raw Lucid in §3,
evaluating our system in §4, and concluding in §6.

2 SwitchLog Design

SwitchLog is inspired by other distributed logic programming languages such as
Network Datalog (NDLog) [12]. To illustrate the key similarities and differences,
we begin our discussion of SwitchLog’s design by presenting an implementation
of shortest paths routing in NDLog, and then show how the application changes
when we move to SwitchLog.

2.1 NDLog

A typical Datalog program consists of a set of facts, as well as several rules for
deriving more facts. Each fact is an element r(x1, . . . , xn) of some predefined
relations over data values xi. Each rule has the form p1 :− p2, p3...pn, where the
pi are facts, and may be read logically as “the facts p2 through pn together imply
p1”. Operationally, if facts p2 through pn have been derived then fact p1 will be

3

A C

B

4

1 2

next(B,C,C,2)

next(A,C,C,4)
next(A,C,B,3)
next(A,B,B,1)

A C

B
1 2

4

link(A,C,4)
link(A,B,1)

link(B,C,2)

A C

B

4

1 2

mincost(B,C,2)
best(B,C,C)

mincost(A,C,3)
mincost(A,B,1)
best(A,C,B)
best(A,B,B)

(1) Link weights (given) (2) Computing next relation (3) Computing mincost and best

Fig. 1. Sample Execution of NDLog Program

as well. If a relation never appears on the left-hand side of any rule, it is called a
base relation; elements of base relations are never derived, and must be supplied
externally.

In a distributed logic programming language like NDLog, each fact is located
in a particular place—by convention, the first argument of a fact indicates where
it is stored. Hence, the fact f(@L, x, y) is stored at location L—the @ symbol acts
as a mnemonic. We call this argument the location specifier. Other parameters
of the relation may also be locations, but they have no special meaning.

When a rule has the form f(@L2, x) :− g(@L1, y), communication occurs:
A message is transmitted from location L1 to location L2. Hence, such logic
programming languages facilitate description of distributed communication pro-
tocols (the essence of networking) very concisely.

As an example, consider implementing shortest paths routing in NDLog. We
might use the following relations.

link(@S, N, C) // Cost from S to immediate neighbor N is C

next(@S, D, N, C) // Cost from S to D through N is C

mincost(@S, D, C) // Cost of min path from S to D is C

best(@S, D, N) // Best path from S to D goes through N next

We will assume the link relation has already been defined—for each node S,
the link relation determines the cost of sending traffic to each neighbor N . To
compute next, mincost, and best, we use the following rules.

(1) next(@SELF, N, N, C) :- link(@SELF, N, C).

(2) next(@SELF, D, N, C) :- link(@SELF, N, C1),

next(@N, D, N', C2), C=C1+C2.

(3) mincost(@SELF, D, min<C>) :- next(@SELF, D, N, C)

(4) best(@SELF, D, N) :- mincost(@SELF, D, C), next(@SELF, D, N, C)

Rules (1) and (2) consider the cost of routing from S to D through every
neighbor N. Rule (1) considers the possibility that the destination is the neighbor

4

N itself — in this case, the cost of the path is the cost of the single link from
S to N. Rule (2) considers the cost of routing from S to N (which has cost C1)
and then from N to the destination through some other node N’ (which has cost
C2). The cost of this entire path is C. Rule (3) computes the minimum cost for
every source-destination pair and finally Rule (4) finds the neighbor which can
reach the destination with the minimum cost.

The key aspect to focus on is the iteration involved in running this program.
Figure 1 illustrates the results of executing this NDLog program on a particular
topology—in each snapshot, the facts generated at node A are shown next to
it. The first snapshot presents the link table, which represents the topology
of the network from A’s perspective. The second snapshot presents the “next”
facts that are computed. Snapshot 3 presents the mincost and best relations
computed.

To compute mincost(A, C, 3) (via rule 3), the logic program considers all
tuples with the form next(A, C, N, X) and finds the minimum integer X
that occurs. In this case, there were just two such tuples (next(A,C,C,4) and
next(A, C, B, 3)), but in more complex topologies or examples, there could
be enormous numbers of such tuples. Iteration over large sets of tuples, while
theoretically feasible on a switch via recirculation, is too expensive to support
in practice.

Likewise, rule (4) implements a join between mincost and next relations.
In principle, any pair of tuples mincost(S,D,C) and next(S,D, ,C) where
values S, D, and C might coincide must be considered. Once again, when imple-
menting such a language on switch, we must be careful to control the kinds of
joins like this that are admitted—many joins demand iteration over all tuples in
a relation and/or require complex data structures for efficient implementation
that cannot be realized on switch at line rate.

2.2 SwitchLog

As illustrated in the prior section, NDLog programs are very powerful: they can
implement arbitrary aggregation operations (like min over a relation) and com-
plex, computationally-expensive joins. Our new language, SwitchLog, may be
viewed as a restricted form of NDLog, limited to ensure efficient implementation
on a programmable ASIC switch like the Intel Tofino. An essential goal of our
design is to ensure that computations never need to do too much work at once;
in particular, we must be very careful about which joins we admit, to avoid
excessive amounts of iteration.

We achieve this by imagining that our derived facts are stored in a lookup
table (a fundamental construct in computer networks), using some of their fields
as a key. Then, if the program’s rules have the right form (described in §2.3),
we are able to look up facts by key, rather than iterating over all facts in the
database. This allows us to execute such rules in constant time.

Keys and Values Relations in SwitchLog are declared using the table key-
word, with the following syntax:

5

// The cost from S to neighbor N is C

table link(@S, loc N : key, int C)

// The best path from S to D is via neighbor N, with cost C

table next(@S, loc D : key, loc N, int C)

The type loc refers to a location in the network (e.g. a switch identifier). The
key annotation means that field is a key, so N is a key of link, and C is a value.
Similarly, D is a key of next, and N and C are values. The location specifier
is always implicitly a key. The system maintains the invariant that, for each
relation, there is at most one known fact with a given combination of keys.

Merging facts To enforce this invariant, every SwitchLog rule contains a merge
operator, which describes what to do if we derive a fact with the same keys as
an existing fact. To illustrate this, consider the following variant of the shortest
paths problem in SwitchLog.1

(S1) next(@SELF, N, N, C) with merge min<C> :- link(@SELF, N, C).

(S2) next(@SELF, D, N, C) with merge min<C> :-

link(@SELF, N, C1), next(@N, D, C2, hop), C=C1+C2.

This program implements the same routing protocol as the earlier NDLog
program, but does so in a slightly different way.

Rule (S1) says “if there is a link from SELF to N with cost C, then there is a
path from SELF to N with cost C, via N.” Rule (S2) says “if there is a link from
SELF to N with cost C1, and there is a path from N to D with cost C2, then there
is a path from SELF to D with cost C1+C2, via N.” The min<C> operator tells us
that if we discover another path from SELF to D, we should retain the one with
the lower value of C.

Currently, SwitchLog supports the following merge operators:

1. min<A> and retains the fact with the lower value of A, where A is one of the
arguments of the fact on the LHS.

2. Count<A,n> increments the argument A of the LHS by n each time a given
fact is rederived. A must be an integer, and it must be a value field of the
relation.

3. recent retains the most recent instance of a fact to be derived (e.g. to
simulate changing network conditions).

In the rest of this paper, we may omit the merge operator on rules; doing so
indicates that the most recently derived fact is preferred (i.e. we default to the
recent operator).

1 A similar program could be implemented in NDLog. It is not that SwitchLog is more
efficient than NDLog necessarily, rather that SwitchLog is restricted so that only the
efficient NDLog programs may be implemented.

6

The link relation Switches in a network are rarely connected directly to every
other switch. Knowledge of how the switches are connected is important for
efficient implementation, since sending messages to a distant destination requires
more work than communicating with an immediate neighbor.

SwitchLog incorporates this information through use of a special base relation
called link. The user may determine the exact arguments of the link relation,
but the first argument (after the location specifier) must be a location. The fact
link(S, N, ...) means that switch S is connected to switch N. When this is
true, we refer to S and N as neighbors.

2.3 Guidelines for SwitchLog Rules

In addition to providing merge operators, SwitchLog rules must obey several
more restrictions to ensure that they can be executed efficiently on a switch.
These constraints are detailed below, along with examples. The examples refer
to the following relation declarations:

table P1(@S, int Y : key, int Z)

table P2(@S, int Y : key, int Z)

table P3(@S, loc Y : key, loc Q : key, int Z, int W)

SwitchLog rules must obey the following constraints:

1. No more than two unique location specifiers may appear in the rule.
P1(@SELF, Y, Z) :- P2(@A, Y, Z), P2(@SELF, Y, Z) ✓
P1(@SELF, Y, Z) :- P2(@A, Y, Z), P2(@B, Y, Z) ×

2. If two different location specifiers appear in the rule, then they must be
neighbors. (Equivalently, the rule must contain a link predicate containing
those locations.)

3. If the same relation appears multiple times in the rule, each instance must
have a different location specifier.
P1(@SELF, X, Y):- P1(@A, X, Y), P2(@SELF, X, Y) ✓
P1(@SELF, X, Y):- P1(@SELF, X, Y), P2(@SELF, X, Y) ×

4. All fields of the LHS must appear on the RHS

5. All predicates on the RHS must have the same set of keys, except that one
predicate may have a single additional key, which must be a location.
P1(@SELF, Y, Z):- P2(@SELF, Y, Z), P3(@SELF, O, Y, Z, W) ✓
P1(@SELF, Y, Z) :- P2(@SELF, Y, Z), P3(@SELF, O, Q, Z, W) ×

All of these restrictions are syntactic and can be checked automatically. Al-
though in principle, a SwitchLog program that violates these restrictions can be
compiled, the compiler we have implemented throws an error for restrictions 1,
3, 4, and 5. A program violating restriction 2 only generates a warning, but still
compiles, even though the behavior is not well-defined.

7

Choosing good guidelines None of the restrictions above are truly funda-
mental; in principle, one could compile a program that broke all of them, albeit
at the cost of significant extra work. We chose these particular constraints be-
cause, in our judgement, they strike a good balance between expressivity and
efficiency. We show in our evaluation (§4) that we have been able to implement
a range of networking algorithms, most of which can execute each rule with a
constant amount of work. At the same time, we were still able to implement a
routing protocol in which additional work is unavoidable (due to the need to
synchronize routing information when a switch is added to the network).

Each of our guidelines reflects some constraint of programmable switches, as
well as the fact that switch computation is inherently incremental, dealing with
only one packet at a time. These will be described in more detail in the next
section, but briefly, the reasons for each rule are as follows:

1. Each different location requires a separate query to look up the fact, and
queries from different locations are difficult to merge.

2. If queries are sent between switches which are not neighbors, they must be
routed like traffic packets, generating additional work.

3. Switch hardware only allows us to access a single fact of each relation per
packet, so we cannot lookup the same fact multiple times in a single location
without doing extra work.

4. The predicate on the LHS must be fully defined by the facts on the right;
i.e. all of its entries must be “bound” on the RHS.

5. If all the predicates on the RHS have the same set of keys, then given any
one fact we can use its keys to look up the values of the others. If a predicate
has an additional key, then we need to try all possible values of that key.
However, since that key has location type, we need only iterate over the
number of switches in the network, rather than a table.

3 Compiling SwitchLog

SwitchLog is compiled to Lucid, a high-level language for stateful, distributed
data-plane programming that is itself compiled to P4 16 for the Intel Tofino.
Lucid provides an event-driven abstraction for structuring applications and coor-
dinating control that makes it easy to express the high-level ideas of SwitchLog.

A Lucid program consists of definitions for one or more events, each of which
carries user-specified data. An event might represent an incoming traffic packet
to process, a request to install a firewall entry, or a probe from a neighboring
switch, for example. Each event has an associated handler that defines an atomic
stateful computation to perform when that event occurs. Lucid programs store
persistent state using the type Array.t, which represents an integer-indexed
array.

To demonstrate the compilation process, consider the following simple SwitchLog
program:

table FOO(@loc, int k1 : key, int v1)

8

1 // Values f o r the foo and bar r e l a t i o n (1024 en t r i e s each)
2 g l oba l Array . t foo 0 = Array . c r e a t e (1024) ; // Store s FOO. v1
3 g l oba l Array . t bar 0 = Array . c r e a t e (1024) ; // Store s BAR. v2
4
5 // Values f o r the ABC r e l a t i o n
6 g l oba l Array . t abc 0 = Array . c r e a t e (1024) ; // Store s ABC. v1
7 g l oba l Array . t abc 1 = Array . c r e a t e (1024) ; // Store s ABC. v2
8
9 // Mapping from neighbor to por t

10 g l oba l Array . t<<16>> nid port = Array . c r e a t e (COUNT) ;

Fig. 2. Arrays representing the SwitchLog relations

table BAR(@loc, int k1 : key, int v2)

table ABC(@loc, int k1 : key, int v1, int v2)

(R1) ABC(@SELF, k1, v1, v2) with merge min<v2> :-

FOO(@SELF, k1, v1), BAR(@loc, k1, v2), link(@SELF, loc)

Note that (R1) obeys the all restrictions on SwitchLog Programs described in
§2.3; in particular, FOO and BAR have the same set of keys, except for the location
specifier of BAR.

3.1 Compiling Relations

The first step to compiling a SwitchLog program is allocating space to store
our derived facts. We represent each relation as a hash table, with the keys and
values of the relation used directly as the keys and values of the table. Each
switch has a copy of each hash table, containing those facts which are located
at that switch.

Since modern switches do not allow wide, many-bit aggregates to be stored in
a single array, we store each value separately; hence each hash table is represented
by a series of arrays, one for each value in the relation. In addition to storing
the set of derived facts, each switch maintains a nid port array which maps
neighbors to the port they’re connected to. Figure 2 shows the arrays in Lucid.

Each SwitchLog relation is also associated with a Lucid event of the same
name, carrying the data which defines an element of that relation. The event’s
handler uses the keys of the relation to update the Arrays defined in Figure 2.
Then, since other rules may depend on the new information, we trigger an event
to evaluate any dependent rules.

3.2 Evaluating Rules

Evaluating a SwitchLog rule requires us to do two things. The evaluation of the
rule is always triggered by the derivation of a new fact which matches a predicate

9

1 memop s to r e i f sma l l e r (int x , int y) {
2 i f (x < y) { return x ; }
3 else { return y ; }
4 }

Fig. 3. Memops for the Min Aggregate

on the RHS of the rule. Hence, the first thing we must do is look up facts which
match the remaining RHS predicates. If the starting fact contains all the keys
of the predicate (e.g. looking up FOO in R1 given BAR; note that we always know
SELF), this is simple; we need only use them to look up the corresponding values,
then begin evaluating the body of the rule. This is the behavior of event bar

in Figure 4.
However, we may not know all the keys in advance. If we start executing

R1 with a new FOO fact, we do not know which value of loc will result in the
minimum v2. To account for this, we must send queries to each neighbor of
SELF to get potential values of v2. Once those queries return, we can use them
to execute the body of the rule. In Figure 4, this behavior is split over three
events. event foo begins the process, event loop neighbors sends requests
to each neighbor, and event lookup bar actually performs the lookup at each
neighbor and begins executing R1 with the result.

Once we have looked up all the relevant information, the second step is to
create the new fact, store it in memory, and trigger any rules that depend on it.
This is done in rule R1.

This example illustrates our general compilation strategy. For each relation,
we create (1) arrays to represent it as a hash table, and (2) an event to update
those arrays. After each update, we trigger any rules that depend on that rela-
tion, either by evaluating them directly (e.g., event bar), or by first gathering
any necessary information, such as unknown keys (e.g., event foo). The evalu-
ation of rules may trigger further updates, which may trigger further rules, and
so on.

The behavior of our compiled code is summarized in Algorithm 1. It is similar
to semi-naive evaluation in Datalog in that when a new fact comes in, we only
incrementally compute new facts for rules. However, there are two key differences
in how this computation is done. The first is that we have to account for inter-
switch communication, so we have to query for certain predicates that may be
missing, and the continue the evaluation when the query returns. The second is
that our key-value semantics ensure that one new fact can generate at most one
instance of a predicate pi on a switch.

3.3 Optimizations

Accessing memory Switch hardware places heavy restrictions on memory
accesses: only a single index of each array may be accessed by each packet, and

10

1 // Update bar ' s va lue and execu te r u l e (R1) at a l l ne i ghbor s
2 handle event bar (int k1 , int v2) {
3 int idx = hash<<16>>(SEED, k1) ;
4 Array . s e t (bar 0 , idx , v2) ;
5 generate ports (a l l ne ighbors , rule R1 (k1 , v2)) ;
6 }
7 // Update foo ' s va lue and (e v e n t u a l l y) execu te r u l e (R1)
8 handle event foo (int k1 , int v1) {
9 int<<16>> idx = hash<<16>>(SEED, k1 , k2) ;

10 Array . s e t (foo 0 , idx , v1) ;
11 generate event loop neighbors (0 , k1) ;
12 }
13
14 // Request the va lue o f bar from each ne ighbor
15 handle event loop neighbors (int i , int k1) {
16 int<<16>> port = Array . get (nid port , i) ;
17 generate port (port , event lookup bar (SELF, k1)) ;
18 i f (i < neighbor ct) {
19 generate event loop neighbors (i +1, k1) ;
20 }
21 }
22
23 // Look up the va lue o f bar , then execu te r u l e (R1) at the
24 // r e qu e s t e r ' s l o c a t i o n
25 handle event lookup bar (int r eques t e r , int k1) {
26 int<<16>> idx = hash<<16>>(SEED, k1) ;
27 int v2 = Array . get (bar 0 , idx) ;
28 int<<16>> port = Array . get (nid port , r e que s t e r) ;
29 generate port (port , rule R1 (k1 , v2)) ;
30 }
31
32 // We don ' t need v1 because we can look i t up
33 handle rule R1 (int k1 , int v2) {
34 int<<16>> idx = hash<<16>>(SEED, SELF, k1) ;
35 int v1 = Array . get (foo 0 , idx) ;
36 Array . s e t (abc 0 , idx , v1) ;
37 // Store v2 on ly i f i t ' s sma l l e r than the curren t entry
38 Array . setm (abc 1 , idx , s to r e i f sma l l e r , v2) ;
39 }

Fig. 4. Lucid Code for evaluating rules and updating tables. SEED is a seed for the
hash function

11

Algorithm 1 Evaluation Algorithm

Require: A fact qn
for each predicate Pi dependent on qn do

if Pi can be evaluated at the current switch then
∆Pi = Evaluate using ∆P0...∆Pi−1 and rule Ri

Pi = Pi ∪∆Pi

if Pi involves communication then
Broadcast to all switches that need Pi

end if
else

if Pi needs a predicate stored elsewhere then
Store Pi

Query required switches
end if

then only once per packet. This means that we cannot, for example, read a value
from memory, perform some computation, and write back to the same memory
using a single packet. The general solution is packet recirculation – generating a
new packet (or event, in Lucid) that does the write in a second pass through the
switch. While general, this approach is inefficient because it doubles the number
of packets we must process to evaluate the rule.

Fortunately, the hardware provides a better solution if the amount of compu-
tation between the read and the write is very small (say, choosing the minimum of
two values). The memop construct in Lucid represents the allowed forms of compu-
tation as a syntactically-restricted function. The argument store if smaller

to Array.setm is a memop (defined in Figure 3) which compares v2 to the cur-
rent value in memory, and stores the smaller one. By using memops, we are able
to avoid costly recirulation.

Inlining events Often, the compilation process described above produces
“dummy” events, which only serve to generate another event, perhaps after
performing a small computation of their own. Each generated event results in
a new packet we need to process, so we inline the generated events wherever
possible. This ensures we are doing the maximum amount of work per packet,
and thus minimizes the amount of overhead our rules require.

3.4 Integration with Lucid

While SwitchLog programs can be used independently to generate sets of facts
(which could be read from switch memory by network operators or monitoring
systems), they are most powerful when used to guide packet forwarding within
the switch itself. We enable this by embedding SwitchLog into Lucid. Users
write general-purpose Lucid code that can introduce new facts to the SwitchLog
sub-program, then read derived facts to guide packet processing decisions. For
example, using the fwd neighbour array to lookup values and make decisions

12

1 tab l e l i n k (@SELF, int dest : key , int co s t)
2 t ab l e fwd (@SELF, int dest : key , int cost , int neighbor)
3
4 ru l e fwd (@SELF, dest , cost , des t) :−
5 l i n k (@SELF, dest , c o s t)
6
7 ru l e fwd (@SELF, dest , cost , next) with merge min<cost> :−
8 l i n k (@SELF, neighbor , co s t1) ,
9 fwd (@neighbor , dest , cost2 , next) ,

10 int co s t = cos t1 + cos t2 ;
11
12 handle packet in (int dst) {
13 // check i f a path e x i s t s .
14 int<<16>> idx = hash<<16>>(SEED, SELF, dst) ;
15 // Lookup the `neighbor ` va lue o f the s t o r ed fwd t a b l e
16 int next hop = Array . get (fwd neighbor , idx) ;
17 i f (next hop != 255) {
18 // Find the matching por t and forward the packe t
19 int outport = Array . get (nid port , next hop) ;
20 generate packetout (outport) ;
21 }
22
23 }

Fig. 5. A SwitchLog program integrated with Lucid. The first few lines express a
routing protocol in SwitchLog, and the packetin event uses the fwd table

based on them. This powerful technique allows users to compute amenable data
using SwitchLog’s declarative syntax, while also operating on that data with the
full expressiveness of Lucid. Figure 5 shows how the next table from the routing
example can be used to forward packets.

4 Evaluation

We evaluated SwitchLog by using it to implement four representative data-plane
applications. The applications have diverse objectives, illustrating the flexibility
of SwitchLog.

– Path computation. The router and mac learner implement routing algo-
rithms at the core of most modern networks.

– Monitoring. The netflow cache implements the data structure at the core
of many telemetry systems[16][18][6], a per-flow metric cache, while the host
usage query implements a per-host bandwidth measurement query from
Marple [14].

– Security. Finally, the stateful firewall implements a common security pro-
tocol – only allowing packets to enter a local network from the Internet

13

LoC Resources
Application SwitchLog Lucid P4 Stages Tables sALUs Recirculation

Mac Learner 7 55 630 8 11 3 ∝ new host
Router 4 74 801 9 19 6 ∝ link up/down
Netflow Cache [16] 3 21 320 3 8 2 -
Stateful Firewall 3 28 410 5 10 1 -
Distr Hvy Hitter [7] 5 44 548 3 6 1 -
Flow Size Query [14] 3 58 1276 4 15 7 -

Fig. 6. Lines of code and resource utilization of SwitchLog applications compiled to
Tofino.

if they belong to connections previously established by internal hosts. The
distributed heavy hitter detector, based on [7], identifies heavy hitter flows
that split their load across multiple network entry points (for example, DDoS
attackers seeking to avoid detection).

Our primary evaluation metrics for SwitchLog were conciseness and efficiency,
which we gauged by measuring the lines of code and resource requirements of
our programs when compiled to the Intel Tofino. Figure 6 reports the results.

Conciseness. As Figure 6 shows, SwitchLog applications are around 10X shorter
than the Lucid programs that they compile to, and over 100X shorter than the
resulting P4. A SwitchLog program is much shorter than its Lucid equivalent
because each rule in SwitchLog (a single line) translates into many lines of im-
perative Lucid code that defines the events necessary to propagate new facts and
the handlers/memops necessary to perform the respective updates. The result-
ing Lucid code is itself 10X smaller than the final P4, simply because Lucid’s
syntax is itself much more concise than P4.

Resource utilization. As Figure 6 shows, all the SwitchLog programs that we im-
plemented fit within the 12-stage processing pipeline of the Tofino. Each stage of
the Tofino’s pipeline contains multiple kinds of compute and memory resources,
for example ternary match-action tables that select instructions to execute in
parallel based on packet header values, ALUs that execute instructions over
packet headers, and stateful ALUs (sALUs) that update local memory banks
that persist across packets. All SwitchLog programs in used under 10% of all
stage-local Tofino resources. Our evaluation programs were most resource inten-
sive with respect to the ternary tables and stateful ALUs – Figure 6 lists the
total number of each resource required by the programs.

To get an idea of how well-optimized SwitchLog-generated code is, we hand-
optimized the Lucid program generated by SwitchLog for the router application
with the goal of reducing the number of stages. We found 2 simple optimizations
that reduced the program from 9 stages to 7 stages. First, we saved a stage
by deleting event handlers that were no longer needed because they had been
inlined. Second, we saved another stage by rewriting a memop on the program’s

14

critical path to perform an add operation on a value loaded from memory, which
previously took place in a subsequent stage. We were unable to find any other
ways to optimize the router at the Lucid level, though it is likely that a lower-
level P4 implementation could be further optimized, as the Lucid compiler itself
is not optimal.

Another important resource to consider is pipeline processing bandwidth.
SwitchLog programs recirculate packets when they generate events, and these
packets compete with end-to-end traffic for processing bandwidth. Some amount
of recirculation is generally okay – for example the Tofino has a dedicated 100
Gb/s recirculation port and enough processing bandwidth to service that port
and all other ports at line rate. As the final column of Figure 6 summarizes,
we found that in our SwitchLog programs, packet recirculation only occurred
when the network topology changes. Such events are rare, thus in practice we
expect that all of these applications would fit within the recirculation budget
of switches in real networks. We also note that our event inlining optimization
was particularly important for the netflow cache. Without the optimization, the
cache required a recirculation for every packet, whereas with the optimization,
it required no packet recirculation at all.

5 Limitations and Future Work

The key-value semantics limit the kinds of programs that can be expressed in
SwitchLog. For instance, consider the following NDLog program to compute all
neighbors and costs.

(1) paths(@SELF, N, N, C) :- link(@SELF, N, C).

(2) paths(@SELF, D, N, C) :- link(@SELF, N, C1),

paths(@N, D, N', C2), C=C1+C2.

The paths table can contain multiple neighbors, which means that one set of
@SELF, D values can have multiple values of N and C. However, SwitchLog’s
semantics only allow one set of values to be stored for each set of keys. Therefore,
it is not possible to keep an up-to date table that requires storing multiple values
for a given set of keys.

There are also several data plane applications that cannot be expressed in
SwitchLog either. A Bloom Filter is a probabilistic data structure that is used
commonly on network switches. It consists of an Array, and typically uses a
number of different hash functions that map each element to an array index. The
current syntax and semantics of SwitchLog do not support the use of multiple
hash functions. However, if we allowed multiple hash functions, a bloom filter
might look as follows:

(1) arr1(@SELF, H, B) :- data(@SELF, K1), H = hash1(K1); B = 1;

(2) arr2(@SELF, H, B) :- data(@SELF, K1), H = hash2(K1); B = 1;

(3) arr3(@SELF, H, B) :- data(@SELF, K1), H = hash3(K2); B = 1;

15

(4) bloom_filter(@SELF, H, B) :- data(@SELF, K1),

arr1(@SELF, hash1(K1), 1),

arr2(@SELF, hash2(K1), 1),

arr3(@SELF, hash3(K1), 1).

where data is some SwitchLog predicate. Since SwitchLog is can be integrated
with Lucid, Rule (4) could also be implemented as a Lucid function, that com-
putes the hashes and looks up the three arrays. A future target for SwitchLog
is to have probabilistic data structures like a Bloom Filter or Count-Min Sketch
built-in. In particular, the count aggregate might be implemented as a count-min
sketch internally rather than an actual counter.

Another limitation of the declarative syntax is the inability to modify packet
headers. In Lucid, this is achieved through the exit event. However, allowing
programmers to specify exit events in SwitchLog programs would lead to unde-
fined program behavior. In particular, in case of communication, the exit event
needs to be a request generated by the SwitchLog compiler, and in case there
are 2 possible exit events, it is unclear which one to execute.

6 Conclusion

SwitchLog brings a new kind of logic programming abstraction to the network
data plane, allowing programmers to construct distributed, table-driven pro-
grams at a high-level of abstraction. While SwitchLog was inspired by past
declarative network programming languages such as NDLog [12], the compu-
tational limitations of current switch hardware necessitate a modified design;
in particular, SwitchLog’s explicit key/value distinction enables constant-time
lookup of most facts. By restricting the form of rules, SwitchLog can ensure
that only efficient joins are permitted. With these restrictions, SwitchLog allows
programmers to express a variety of useful networking applications as concise
logic programs, and execute those programs inside a real network.

References

1. Differential datalog. VMWare (2019), see also
https://github.com/vmware/differential-datalog

2. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., et al.: P4: Programming protocol-
independent packet processors. ACM SIGCOMM Computer Communication Re-
view 44(3), 87–95 (2014)

3. Eichholz, M., Campbell, E.H., Krebs, M., Foster, N., Mezini, M.: Dependently-
typed data plane programming. Proc. ACM Program. Lang. 6(POPL) (jan 2022).
https://doi.org/10.1145/3498701, https://doi.org/10.1145/3498701

4. Gao, J., Zhai, E., Liu, H.H., Miao, R., Zhou, Y., Tian, B., Sun, C., Cai,
D., Zhang, M., Yu, M.: Lyra: A cross-platform language and compiler for
data plane programming on heterogeneous asics. In: Proceedings of the An-
nual Conference of the ACM Special Interest Group on Data Communication

16

on the Applications, Technologies, Architectures, and Protocols for Computer
Communication. p. 435–450. SIGCOMM ’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3387514.3405879,
https://doi.org/10.1145/3387514.3405879

5. Gao, X., Kim, T., Wong, M.D., Raghunathan, D., Varma, A.K., Kan-
nan, P.G., Sivaraman, A., Narayana, S., Gupta, A.: Switch code gener-
ation using program synthesis. In: Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols for Computer Com-
munication. p. 44–61. SIGCOMM ’20, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3387514.3405852,
https://doi.org/10.1145/3387514.3405852

6. Gupta, A., Harrison, R., Canini, M., Feamster, N., Rexford, J., Willinger,
W.: Sonata: Query-driven streaming network telemetry. In: Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Com-
munication. p. 357–371. SIGCOMM ’18, Association for Computing Machin-
ery, New York, NY, USA (2018). https://doi.org/10.1145/3230543.3230555,
https://doi.org/10.1145/3230543.3230555

7. Harrison, R., Cai, Q., Gupta, A., Rexford, J.: Network-wide heavy hitter detection
with commodity switches. In: Proceedings of the Symposium on SDN Research.
pp. 1–7 (2018)

8. Hsu, K.F., Beckett, R., Chen, A., Rexford, J., Walker, D.: Contra: A programmable
system for performance-aware routing. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). pp. 701–721 (2020)

9. Laffranchini, P., Rodrigues, L.E.T., Canini, M., Krishnamurthy, B.: Mea-
surements as first-class artifacts. In: 2019 IEEE Conference on Computer
Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019.
pp. 415–423. IEEE (2019). https://doi.org/10.1109/INFOCOM.2019.8737383,
https://doi.org/10.1109/INFOCOM.2019.8737383

10. Loehr, D., Walker, D.: Safe, modular packet pipeline programming. Proc.
ACM Program. Lang. 6(POPL) (jan 2022). https://doi.org/10.1145/3498699,
https://doi.org/10.1145/3498699

11. Loo, B.T.: The design and implementation of declarative networks p. 210 p (Dec
2006), http://digicoll.lib.berkeley.edu/record/139082

12. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative routing:
extensible routing with declarative queries. ACM SIGCOMM Computer Commu-
nication Review 35(4), 289–300 (2005)

13. Narayana, S., Arashloo, M.T., Rexford, J., Walker, D.: Compiling path queries.
In: Proceedings of the 13th Usenix Conference on Networked Systems Design and
Implementation. p. 207–222. NSDI’16, USENIX Association, USA (2016)

14. Narayana, S., Sivaraman, A., Nathan, V., Goyal, P., Arun, V., Al-
izadeh, M., Jeyakumar, V., Kim, C.: Language-directed hardware de-
sign for network performance monitoring. In: Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communica-
tion. p. 85–98. SIGCOMM ’17, Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3098822.3098829,
https://doi.org/10.1145/3098822.3098829

15. Sivaraman, A., Cheung, A., Budiu, M., Kim, C., Alizadeh, M., Balakrishnan,
H., Varghese, G., McKeown, N., Licking, S.: Packet transactions: High-level
programming for line-rate switches. In: Proceedings of the 2016 ACM SIG-

17

COMM Conference. p. 15–28. SIGCOMM ’16, Association for Computing Ma-
chinery, New York, NY, USA (2016). https://doi.org/10.1145/2934872.2934900,
https://doi.org/10.1145/2934872.2934900

16. Sonchack, J., Aviv, A.J., Keller, E., Smith, J.M.: Turboflow: Information rich flow
record generation on commodity switches. In: Proceedings of the Thirteenth Eu-
roSys Conference. pp. 1–16 (2018)

17. Sonchack, J., Loehr, D., Rexford, J., Walker, D.: Lucid: A language for control in
the data plane. In: Proceedings of the 2021 ACM SIGCOMM 2021 Conference. pp.
731–747 (2021)

18. Sonchack, J., Michel, O., Aviv, A.J., Keller, E., Smith, J.M.: Scaling hardware
accelerated network monitoring to concurrent and dynamic queries with {* Flow}.
In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). pp. 823–835
(2018)

19. Soni, H., Rifai, M., Kumar, P., Doenges, R., Foster, N.: Composing dat-
aplane programs with µp4. In: Proceedings of the Annual Conference of
the ACM Special Interest Group on Data Communication on the Appli-
cations, Technologies, Architectures, and Protocols for Computer Commu-
nication. p. 329–343. SIGCOMM ’20, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3387514.3405872,
https://doi.org/10.1145/3387514.3405872

20. Wang, A., Basu, P., Loo, B.T., Sokolsky, O.: Declarative network verification. In:
Proceedings of the 11th International Symposium on Practical Aspects of Declar-
ative Languages. p. 61–75. PADL ’09, Springer-Verlag, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92995-6 5, https://doi.org/10.1007/978-3-540-
92995-6 5

18

